YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Extraction of Nonlinear Aerodynamic Damping of Crosswind-Excited Tall Buildings from Aeroelastic Model Tests

    Source: Journal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 003
    Author:
    Wei Hao
    ,
    Xinzhong Chen
    ,
    Qingshan Yang
    DOI: 10.1061/(ASCE)EM.1943-7889.0001731
    Publisher: ASCE
    Abstract: This paper presents a new approach for extracting nonlinear aerodynamic damping of crosswind-excited tall buildings from response statistics at different levels of structural damping obtained from aeroelastic model tests. The aerodynamic damping at a given wind speed was modeled as a polynomial function of the amplitude of the harmonic building motion, which leads to analytical solutions of the standard deviation (SD) and kurtosis of the crosswind response under stochastic load excitation. As an inverse problem of response analysis, the nonlinear aerodynamic damping model coefficients can be identified from known response SD and kurtosis through a nonlinear optimization algorithm. The crosswind loading spectrum at the structural frequency can be determined from rigid model testing or treated as an unknown. The accuracy of this identification scheme is first illustrated using crosswind response of a tall building calculated from a given nonlinear damping model. It is then applied to a square-shaped tall building using aeroelastic model testing data under boundary-layer flows. The limitation of the conventional approach, which did not account for the response kurtosis, is highlighted. With the proposed approach, the effect of approaching flow characteristics on crosswind aerodynamic damping is examined.
    • Download: (8.902Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Extraction of Nonlinear Aerodynamic Damping of Crosswind-Excited Tall Buildings from Aeroelastic Model Tests

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265459
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorWei Hao
    contributor authorXinzhong Chen
    contributor authorQingshan Yang
    date accessioned2022-01-30T19:31:12Z
    date available2022-01-30T19:31:12Z
    date issued2020
    identifier other%28ASCE%29EM.1943-7889.0001731.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265459
    description abstractThis paper presents a new approach for extracting nonlinear aerodynamic damping of crosswind-excited tall buildings from response statistics at different levels of structural damping obtained from aeroelastic model tests. The aerodynamic damping at a given wind speed was modeled as a polynomial function of the amplitude of the harmonic building motion, which leads to analytical solutions of the standard deviation (SD) and kurtosis of the crosswind response under stochastic load excitation. As an inverse problem of response analysis, the nonlinear aerodynamic damping model coefficients can be identified from known response SD and kurtosis through a nonlinear optimization algorithm. The crosswind loading spectrum at the structural frequency can be determined from rigid model testing or treated as an unknown. The accuracy of this identification scheme is first illustrated using crosswind response of a tall building calculated from a given nonlinear damping model. It is then applied to a square-shaped tall building using aeroelastic model testing data under boundary-layer flows. The limitation of the conventional approach, which did not account for the response kurtosis, is highlighted. With the proposed approach, the effect of approaching flow characteristics on crosswind aerodynamic damping is examined.
    publisherASCE
    titleExtraction of Nonlinear Aerodynamic Damping of Crosswind-Excited Tall Buildings from Aeroelastic Model Tests
    typeJournal Paper
    journal volume146
    journal issue3
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001731
    page04020006
    treeJournal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian