YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Plastic-Energy Dissipation in Pressure-Dependent Materials

    Source: Journal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 003
    Author:
    Han Yang
    ,
    Hexiang Wang
    ,
    Yuan Feng
    ,
    Boris Jeremić
    DOI: 10.1061/(ASCE)EM.1943-7889.0001728
    Publisher: ASCE
    Abstract: A thermodynamics-based energy analysis approach for pressure-dependent materials is presented. Formulation of plastic free energy and plastic dissipation for the nonassociated Drucker-Prager plasticity model is derived based on thermodynamics. It is proven that the proposed energy computation formulation always gives nonnegative incremental plastic dissipation, as required by the second law of thermodynamics. The presented methodology is illustrated using numerical simulations of Toyoura sand and Sacramento River sand under different loading conditions. Multidirectional loading and pressure dependency effects on plastic dissipation are investigated. The continuous, nonnegative dissipation of mechanical energy in pressure-dependent frictional materials under complex three-dimensional cyclic loading was properly modeled.
    • Download: (898.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Plastic-Energy Dissipation in Pressure-Dependent Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265456
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorHan Yang
    contributor authorHexiang Wang
    contributor authorYuan Feng
    contributor authorBoris Jeremić
    date accessioned2022-01-30T19:31:07Z
    date available2022-01-30T19:31:07Z
    date issued2020
    identifier other%28ASCE%29EM.1943-7889.0001728.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265456
    description abstractA thermodynamics-based energy analysis approach for pressure-dependent materials is presented. Formulation of plastic free energy and plastic dissipation for the nonassociated Drucker-Prager plasticity model is derived based on thermodynamics. It is proven that the proposed energy computation formulation always gives nonnegative incremental plastic dissipation, as required by the second law of thermodynamics. The presented methodology is illustrated using numerical simulations of Toyoura sand and Sacramento River sand under different loading conditions. Multidirectional loading and pressure dependency effects on plastic dissipation are investigated. The continuous, nonnegative dissipation of mechanical energy in pressure-dependent frictional materials under complex three-dimensional cyclic loading was properly modeled.
    publisherASCE
    titlePlastic-Energy Dissipation in Pressure-Dependent Materials
    typeJournal Paper
    journal volume146
    journal issue3
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001728
    page04019139
    treeJournal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian