YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analytical Solution for Axially Loaded Piles in Two-Layer Soil

    Source: Journal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 003
    Author:
    George Anoyatis
    ,
    George Mylonakis
    DOI: 10.1061/(ASCE)EM.1943-7889.0001724
    Publisher: ASCE
    Abstract: An analytical elastic continuum model is developed for the settlement of end-bearing piles in a two-layer soil over a rigid stratum. The model has its roots in the point-load solution of Westergaard, which was later extended by Tajimi to deep foundations and lies on the assumption of a vanishing soil stress or displacement component. For piles in homogeneous soils, such solutions were elaborated on by Nogami and Novak. Contrary to these solutions, the proposed generalized formulation can handle layered soils using, for the first time, two sets of eigenfunctions (static “modes”) that are different for the soil and the pile. Stresses and displacements are determined in the form of Fourier series with coupled coefficients obtained by solving a system of algebraic equations of rank equal to the number of modes considered. This is in contrast with existing models, where the Fourier coefficients are obtained individually. Pile-head stiffnesses obtained from this model are verified against results from rigorous finite-element analyses and other solutions. Results for pile settlement, pile stresses, side friction, and Winkler moduli are presented.
    • Download: (1.481Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analytical Solution for Axially Loaded Piles in Two-Layer Soil

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265450
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorGeorge Anoyatis
    contributor authorGeorge Mylonakis
    date accessioned2022-01-30T19:30:56Z
    date available2022-01-30T19:30:56Z
    date issued2020
    identifier other%28ASCE%29EM.1943-7889.0001724.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265450
    description abstractAn analytical elastic continuum model is developed for the settlement of end-bearing piles in a two-layer soil over a rigid stratum. The model has its roots in the point-load solution of Westergaard, which was later extended by Tajimi to deep foundations and lies on the assumption of a vanishing soil stress or displacement component. For piles in homogeneous soils, such solutions were elaborated on by Nogami and Novak. Contrary to these solutions, the proposed generalized formulation can handle layered soils using, for the first time, two sets of eigenfunctions (static “modes”) that are different for the soil and the pile. Stresses and displacements are determined in the form of Fourier series with coupled coefficients obtained by solving a system of algebraic equations of rank equal to the number of modes considered. This is in contrast with existing models, where the Fourier coefficients are obtained individually. Pile-head stiffnesses obtained from this model are verified against results from rigorous finite-element analyses and other solutions. Results for pile settlement, pile stresses, side friction, and Winkler moduli are presented.
    publisherASCE
    titleAnalytical Solution for Axially Loaded Piles in Two-Layer Soil
    typeJournal Paper
    journal volume146
    journal issue3
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001724
    page04020003
    treeJournal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian