YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    3D Grain-Based Mesoscale Modeling of Short Fatigue Crack Growth for Bridge Weldments Considering Crack-Front Evolution

    Source: Journal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 002
    Author:
    Dongping Zhu
    ,
    Wei Zhang
    ,
    Hao Yuan
    ,
    Xiaogang Huang
    DOI: 10.1061/(ASCE)EM.1943-7889.0001720
    Publisher: ASCE
    Abstract: To evaluate short crack growth and fatigue damage accumulation in steel structures, efforts have been made based on a two-dimensional (2D) grain-based model for fatigue life assessment under variable amplitude loads. However, crack arrested in a 2D field could be problematic since the arrested 2D crack might propagate toward the out-of-plane direction. In addition, the pure plane stress/plain assumption in 2D simulation could not be applied to many complex stress states. In this paper, a three-dimensional (3D) fatigue damage estimation model is proposed based on a twofold nonlinear grain-based fatigue life assessment method. The persistent slip band based short fatigue crack growth model is implemented in this model combined with Miner’s rule for grain fatigue accumulation evaluations. Rain-flow counting method and the linear damage rule in grains are employed for fatigue damage growth within each grain. Meanwhile, in the grain and subgrain regime, the crack is assumed to nucleate and grow along with persistent slip bands. Also, an adjacent persistent slip band detection algorithm is developed to locate the potential crack propagation path. Therefore, fatigue damage is calculated grain by grain until the crack length reaches the characteristic length (such as over 0.1 mm), where linear elastic fracture mechanics (LEFM) thoery becomes more reliable. Sensitivity analysis is conducted for the number of grains and the element size in statistical volume element model under constant amplitude loads. Finally, a case study is performed to demonstrate the proposed method for variable amplitude loads, and the results are compared with the 2D model results in the literature.
    • Download: (1.037Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      3D Grain-Based Mesoscale Modeling of Short Fatigue Crack Growth for Bridge Weldments Considering Crack-Front Evolution

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265446
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorDongping Zhu
    contributor authorWei Zhang
    contributor authorHao Yuan
    contributor authorXiaogang Huang
    date accessioned2022-01-30T19:30:52Z
    date available2022-01-30T19:30:52Z
    date issued2020
    identifier other%28ASCE%29EM.1943-7889.0001720.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265446
    description abstractTo evaluate short crack growth and fatigue damage accumulation in steel structures, efforts have been made based on a two-dimensional (2D) grain-based model for fatigue life assessment under variable amplitude loads. However, crack arrested in a 2D field could be problematic since the arrested 2D crack might propagate toward the out-of-plane direction. In addition, the pure plane stress/plain assumption in 2D simulation could not be applied to many complex stress states. In this paper, a three-dimensional (3D) fatigue damage estimation model is proposed based on a twofold nonlinear grain-based fatigue life assessment method. The persistent slip band based short fatigue crack growth model is implemented in this model combined with Miner’s rule for grain fatigue accumulation evaluations. Rain-flow counting method and the linear damage rule in grains are employed for fatigue damage growth within each grain. Meanwhile, in the grain and subgrain regime, the crack is assumed to nucleate and grow along with persistent slip bands. Also, an adjacent persistent slip band detection algorithm is developed to locate the potential crack propagation path. Therefore, fatigue damage is calculated grain by grain until the crack length reaches the characteristic length (such as over 0.1 mm), where linear elastic fracture mechanics (LEFM) thoery becomes more reliable. Sensitivity analysis is conducted for the number of grains and the element size in statistical volume element model under constant amplitude loads. Finally, a case study is performed to demonstrate the proposed method for variable amplitude loads, and the results are compared with the 2D model results in the literature.
    publisherASCE
    title3D Grain-Based Mesoscale Modeling of Short Fatigue Crack Growth for Bridge Weldments Considering Crack-Front Evolution
    typeJournal Paper
    journal volume146
    journal issue2
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001720
    page04019133
    treeJournal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian