YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Unified Effective Stress Equation for Soil

    Source: Journal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 002
    Author:
    Chao Zhang
    ,
    Ning Lu
    DOI: 10.1061/(ASCE)EM.1943-7889.0001718
    Publisher: ASCE
    Abstract: Since the early 2000s, suction stress has been conceptualized as a unitary way to quantify effective stress in soil, i.e., effective stress equal to total stress minus suction stress. Suction stress is the part of effective stress purely due to soil-water interaction. When soil is saturated, suction stress is the pore water pressure, whereas when soil is unsaturated, suction stress is a characteristic function of soil called the suction stress characteristic curve (SSCC). Two physicochemical soil-water retention mechanisms are responsible for the SSCC: capillarity and adsorption. These two mechanisms are explicitly considered to develop a closed-form equation for the SSCC and effective stress. The SSCC data from the literature for a variety of soils ranging from clean sand to silty and clayey soils are used to validate the equation, indicating that the equation can well represent the data. Additional validation is achieved using experimental data of the apparent elastic modulus and the SSCC to predict the soil shrinkage curves. The equation can be reduced to Lu et al.’s previous closed-form equation for the SSCC when capillarity dominates soil-water retention, can be reduced to the Bishop’s effective stress equation when capillarity is the sole soil-water retention mechanism, and can be reduced to the Terzaghi’s classical effective stress equation when soil is saturated.
    • Download: (2.048Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Unified Effective Stress Equation for Soil

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265444
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorChao Zhang
    contributor authorNing Lu
    date accessioned2022-01-30T19:30:48Z
    date available2022-01-30T19:30:48Z
    date issued2020
    identifier other%28ASCE%29EM.1943-7889.0001718.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265444
    description abstractSince the early 2000s, suction stress has been conceptualized as a unitary way to quantify effective stress in soil, i.e., effective stress equal to total stress minus suction stress. Suction stress is the part of effective stress purely due to soil-water interaction. When soil is saturated, suction stress is the pore water pressure, whereas when soil is unsaturated, suction stress is a characteristic function of soil called the suction stress characteristic curve (SSCC). Two physicochemical soil-water retention mechanisms are responsible for the SSCC: capillarity and adsorption. These two mechanisms are explicitly considered to develop a closed-form equation for the SSCC and effective stress. The SSCC data from the literature for a variety of soils ranging from clean sand to silty and clayey soils are used to validate the equation, indicating that the equation can well represent the data. Additional validation is achieved using experimental data of the apparent elastic modulus and the SSCC to predict the soil shrinkage curves. The equation can be reduced to Lu et al.’s previous closed-form equation for the SSCC when capillarity dominates soil-water retention, can be reduced to the Bishop’s effective stress equation when capillarity is the sole soil-water retention mechanism, and can be reduced to the Terzaghi’s classical effective stress equation when soil is saturated.
    publisherASCE
    titleUnified Effective Stress Equation for Soil
    typeJournal Paper
    journal volume146
    journal issue2
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001718
    page04019135
    treeJournal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian