YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Data-Driven Computational Homogenization Method Based on Euclidean Bipartite Matching

    Source: Journal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 002
    Author:
    Alp Karakoç
    ,
    Jouni Paltakari
    ,
    Ertugrul Taciroglu
    DOI: 10.1061/(ASCE)EM.1943-7889.0001708
    Publisher: ASCE
    Abstract: Image processing methods combined with scanning techniques—for example, microscopy or microtomography—are now frequently being used for constructing realistic microstructure models that can be used as representative volume elements (RVEs) to better characterize heterogeneous material behavior. As a complement to those efforts, the present study introduces a computational homogenization method that bridges the RVE and material-scale properties in situ. To define the boundary conditions properly, an assignment problem is solved using Euclidean bipartite matching through which the boundary nodes of the RVE are matched with the control nodes of the rectangular prism bounding the RVE. The objective is to minimize the distances between the control and boundary nodes, which, when achieved, enables the bridging of scale-based features of both virtually generated and image-reconstructed domains. Following the minimization process, periodic boundary conditions can be enforced at the control nodes, and the resulting boundary value problem can be solved to determine the local constitutive material behavior. To verify the proposed method, virtually generated domains of closed-cell porous, spherical particle-reinforced, and fiber-reinforced composite materials are analyzed, and the results are compared with analytical Hashin-Shtrikman and Halpin-Tsai methods. The percent errors are within the ranges from 0.04% to 3.3%, from 2.7% to 14.9%, and from 0.5% to 13.2% for porous, particle-reinforced, and fiber-reinforced composite materials, respectively, indicating that the method has promising potential in the fields of image-based material characterization and computational homogenization.
    • Download: (3.103Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Data-Driven Computational Homogenization Method Based on Euclidean Bipartite Matching

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265434
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorAlp Karakoç
    contributor authorJouni Paltakari
    contributor authorErtugrul Taciroglu
    date accessioned2022-01-30T19:30:30Z
    date available2022-01-30T19:30:30Z
    date issued2020
    identifier other%28ASCE%29EM.1943-7889.0001708.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265434
    description abstractImage processing methods combined with scanning techniques—for example, microscopy or microtomography—are now frequently being used for constructing realistic microstructure models that can be used as representative volume elements (RVEs) to better characterize heterogeneous material behavior. As a complement to those efforts, the present study introduces a computational homogenization method that bridges the RVE and material-scale properties in situ. To define the boundary conditions properly, an assignment problem is solved using Euclidean bipartite matching through which the boundary nodes of the RVE are matched with the control nodes of the rectangular prism bounding the RVE. The objective is to minimize the distances between the control and boundary nodes, which, when achieved, enables the bridging of scale-based features of both virtually generated and image-reconstructed domains. Following the minimization process, periodic boundary conditions can be enforced at the control nodes, and the resulting boundary value problem can be solved to determine the local constitutive material behavior. To verify the proposed method, virtually generated domains of closed-cell porous, spherical particle-reinforced, and fiber-reinforced composite materials are analyzed, and the results are compared with analytical Hashin-Shtrikman and Halpin-Tsai methods. The percent errors are within the ranges from 0.04% to 3.3%, from 2.7% to 14.9%, and from 0.5% to 13.2% for porous, particle-reinforced, and fiber-reinforced composite materials, respectively, indicating that the method has promising potential in the fields of image-based material characterization and computational homogenization.
    publisherASCE
    titleData-Driven Computational Homogenization Method Based on Euclidean Bipartite Matching
    typeJournal Paper
    journal volume146
    journal issue2
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001708
    page04019132
    treeJournal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian