YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Clay Anisotropy on Model Simulations of Wetting Collapse

    Source: Journal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 002
    Author:
    Yanni Chen
    ,
    Ferdinando Marinelli
    ,
    Giuseppe Buscarnera
    DOI: 10.1061/(ASCE)EM.1943-7889.0001703
    Publisher: ASCE
    Abstract: Recent interpretations of wetting-induced compaction revealed that water sensitivity can cause a loss of controllability in samples subjected to fluid injection. This paper elaborates these findings by focusing on fabric anisotropy, i.e., a feature of unsaturated clays not encompassed by previous studies. For this purpose, a hydromechanical elastoplastic model with rotational hardening is developed to capture fabric effects. The model performance has been validated under both saturated and unsaturated conditions with reference to laboratory tests on Lower Cromer Till (LCT). To inspect the role of the material properties, parametric analyses have been conducted, thus identifying the parameters which govern the transition from stable to unstable conditions upon wetting. The results show that fabric anisotropy affects only the deformations prior to wetting-collapse, without changing the value of suction at the onset of volumetric instability. By contrast, it is found that the model parameter governing the intensity of suction-hardening is able to alter the value of critical suction at the loss of control regardless of the intensity of fabric evolution. These results corroborate previous findings obtained through isotropic constitutive laws and emphasize the crucial role of hydromechanical constitutive couplings on the inelasticity of unsaturated porous media.
    • Download: (1.094Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Clay Anisotropy on Model Simulations of Wetting Collapse

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265429
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorYanni Chen
    contributor authorFerdinando Marinelli
    contributor authorGiuseppe Buscarnera
    date accessioned2022-01-30T19:30:22Z
    date available2022-01-30T19:30:22Z
    date issued2020
    identifier other%28ASCE%29EM.1943-7889.0001703.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265429
    description abstractRecent interpretations of wetting-induced compaction revealed that water sensitivity can cause a loss of controllability in samples subjected to fluid injection. This paper elaborates these findings by focusing on fabric anisotropy, i.e., a feature of unsaturated clays not encompassed by previous studies. For this purpose, a hydromechanical elastoplastic model with rotational hardening is developed to capture fabric effects. The model performance has been validated under both saturated and unsaturated conditions with reference to laboratory tests on Lower Cromer Till (LCT). To inspect the role of the material properties, parametric analyses have been conducted, thus identifying the parameters which govern the transition from stable to unstable conditions upon wetting. The results show that fabric anisotropy affects only the deformations prior to wetting-collapse, without changing the value of suction at the onset of volumetric instability. By contrast, it is found that the model parameter governing the intensity of suction-hardening is able to alter the value of critical suction at the loss of control regardless of the intensity of fabric evolution. These results corroborate previous findings obtained through isotropic constitutive laws and emphasize the crucial role of hydromechanical constitutive couplings on the inelasticity of unsaturated porous media.
    publisherASCE
    titleInfluence of Clay Anisotropy on Model Simulations of Wetting Collapse
    typeJournal Paper
    journal volume146
    journal issue2
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001703
    page04019130
    treeJournal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian