YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulation and Peak Value Estimation of Non-Gaussian Wind Pressures Based on Johnson Transformation Model

    Source: Journal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 001
    Author:
    Fengbo Wu
    ,
    Guoqing Huang
    ,
    Min Liu
    DOI: 10.1061/(ASCE)EM.1943-7889.0001697
    Publisher: ASCE
    Abstract: The simulation and peak value estimation of non-Gaussian wind pressures are important to the structural and cladding design of the building. Due to its straightforwardness and accuracy, the moment-based Hermite polynomial model (HPM) has been widely used. However, its effective region for monotonicity is limited, resulting in its unsuitability for non-Gaussian processes whose skewness and kurtosis are out of the effective region. On the other hand, the Johnson transformation model (JTM) has attracted attention due to its larger effective region compared with that of the HPM. Nevertheless, the systematic study of its application to the simulation and peak value estimation of non-Gaussian wind pressures is less addressed. Specifically, its comparison with the HPM is not well discussed. In this study, a set of closed-form formulas to determine the relationship between correlation coefficients of the non-Gaussian process and those of the underlying Gaussian process was derived, and they facilitate a JTM-based simulation method for the non-Gaussian process. Analytical expressions for the non-Gaussian peak factor were developed. Furthermore, the JTM was systematically compared with the HPM in terms of the translation function, which helps to understand the ensuing performance evaluation on these two models in the simulation and peak value estimation based on the very long wind pressure data. Results showed that the JTM-based peak value estimation method performs well for wind pressures with weak to mild non-Gaussianity, even those beyond the effective region of the HPM, although it may provide slightly worse estimation for strong softening processes compared with the HPM.
    • Download: (2.640Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulation and Peak Value Estimation of Non-Gaussian Wind Pressures Based on Johnson Transformation Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265425
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorFengbo Wu
    contributor authorGuoqing Huang
    contributor authorMin Liu
    date accessioned2022-01-30T19:30:14Z
    date available2022-01-30T19:30:14Z
    date issued2020
    identifier other%28ASCE%29EM.1943-7889.0001697.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265425
    description abstractThe simulation and peak value estimation of non-Gaussian wind pressures are important to the structural and cladding design of the building. Due to its straightforwardness and accuracy, the moment-based Hermite polynomial model (HPM) has been widely used. However, its effective region for monotonicity is limited, resulting in its unsuitability for non-Gaussian processes whose skewness and kurtosis are out of the effective region. On the other hand, the Johnson transformation model (JTM) has attracted attention due to its larger effective region compared with that of the HPM. Nevertheless, the systematic study of its application to the simulation and peak value estimation of non-Gaussian wind pressures is less addressed. Specifically, its comparison with the HPM is not well discussed. In this study, a set of closed-form formulas to determine the relationship between correlation coefficients of the non-Gaussian process and those of the underlying Gaussian process was derived, and they facilitate a JTM-based simulation method for the non-Gaussian process. Analytical expressions for the non-Gaussian peak factor were developed. Furthermore, the JTM was systematically compared with the HPM in terms of the translation function, which helps to understand the ensuing performance evaluation on these two models in the simulation and peak value estimation based on the very long wind pressure data. Results showed that the JTM-based peak value estimation method performs well for wind pressures with weak to mild non-Gaussianity, even those beyond the effective region of the HPM, although it may provide slightly worse estimation for strong softening processes compared with the HPM.
    publisherASCE
    titleSimulation and Peak Value Estimation of Non-Gaussian Wind Pressures Based on Johnson Transformation Model
    typeJournal Paper
    journal volume146
    journal issue1
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001697
    page04019116
    treeJournal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian