YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Combined Ag and ZnO Nanoparticles on Microbial Communities from Crab Orchard Creek, Illinois, USA

    Source: Journal of Environmental Engineering:;2020:;Volume ( 146 ):;issue: 007
    Author:
    Marissa Campobasso
    ,
    Meisam Peiravi
    ,
    Chunjie Xia
    ,
    Yanna Liang
    ,
    Jia Liu
    DOI: 10.1061/(ASCE)EE.1943-7870.0001745
    Publisher: ASCE
    Abstract: The widespread use of Ag and ZnO nanoparticles (NPs) in commercial products has raised concern of their potential adverse impact on humans and the environment. These NPs most commonly enter the environment from the effluents of wastewater treatment plants (WWTPs). To understand the impact of these NPs on microbial communities, this study focused on adding environment-relevant concentrations of Ag (1  μg/L), ZnO (0.1  μg/L), and Ag+ZnO (1  μg/L+0.1  μg/L) to water collected from where the Carbondale Southeast WWTP effluent mixes with Crab Orchard Creek in IL, USA. Nanoparticles-spiked samples were withdrawn immediately and after 72 h for dynamic light scattering analysis. Optical density analysis by ultraviolet–visible spectroscopy, quantitative PCR analysis, and deoxyribonucleic acid sequencing were also conducted after 72 h. The results showed that ZnO NPs, at the studied concentration, were toxic, as a decrease in microbial biomass at Day 3 compared to the Control was reached, with an increase in mass fraction of nanoscale particles over time. However, when ZnO NPs were added in combination with Ag NPs, the adverse impact of ZnO NPs was mitigated, as an increase in microbial biomass was reached compared to the Control at Day 3, with a decrease in mass fraction of nanoscale particles over time. Ag NPs alone, at the studied concentration, did not bring significant impact on the microbial biomass. The relative abundance of the bacterial population affected the most by the addition of NPs was Firmicutes, with an increase in 13.74% compared to the Control when Ag+ZnO NPs were added. This study demonstrated the response of microbial communities to increased environment-relevant concentrations of NPs in a short period of time. The result will provide information that may aid in the preparation of guidance or regulations related to discharge of mixtures of NPs to surface water.
    • Download: (359.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Combined Ag and ZnO Nanoparticles on Microbial Communities from Crab Orchard Creek, Illinois, USA

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265404
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorMarissa Campobasso
    contributor authorMeisam Peiravi
    contributor authorChunjie Xia
    contributor authorYanna Liang
    contributor authorJia Liu
    date accessioned2022-01-30T19:29:39Z
    date available2022-01-30T19:29:39Z
    date issued2020
    identifier other%28ASCE%29EE.1943-7870.0001745.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265404
    description abstractThe widespread use of Ag and ZnO nanoparticles (NPs) in commercial products has raised concern of their potential adverse impact on humans and the environment. These NPs most commonly enter the environment from the effluents of wastewater treatment plants (WWTPs). To understand the impact of these NPs on microbial communities, this study focused on adding environment-relevant concentrations of Ag (1  μg/L), ZnO (0.1  μg/L), and Ag+ZnO (1  μg/L+0.1  μg/L) to water collected from where the Carbondale Southeast WWTP effluent mixes with Crab Orchard Creek in IL, USA. Nanoparticles-spiked samples were withdrawn immediately and after 72 h for dynamic light scattering analysis. Optical density analysis by ultraviolet–visible spectroscopy, quantitative PCR analysis, and deoxyribonucleic acid sequencing were also conducted after 72 h. The results showed that ZnO NPs, at the studied concentration, were toxic, as a decrease in microbial biomass at Day 3 compared to the Control was reached, with an increase in mass fraction of nanoscale particles over time. However, when ZnO NPs were added in combination with Ag NPs, the adverse impact of ZnO NPs was mitigated, as an increase in microbial biomass was reached compared to the Control at Day 3, with a decrease in mass fraction of nanoscale particles over time. Ag NPs alone, at the studied concentration, did not bring significant impact on the microbial biomass. The relative abundance of the bacterial population affected the most by the addition of NPs was Firmicutes, with an increase in 13.74% compared to the Control when Ag+ZnO NPs were added. This study demonstrated the response of microbial communities to increased environment-relevant concentrations of NPs in a short period of time. The result will provide information that may aid in the preparation of guidance or regulations related to discharge of mixtures of NPs to surface water.
    publisherASCE
    titleEffects of Combined Ag and ZnO Nanoparticles on Microbial Communities from Crab Orchard Creek, Illinois, USA
    typeJournal Paper
    journal volume146
    journal issue7
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0001745
    page04020067
    treeJournal of Environmental Engineering:;2020:;Volume ( 146 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian