YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Adhesion and Deadhesion of Ureolytic Bacteria on Sand under Variable Pore Fluid Chemistry

    Source: Journal of Environmental Engineering:;2020:;Volume ( 146 ):;issue: 006
    Author:
    Surabhi Jain
    ,
    Dali Naidu Arnepalli
    DOI: 10.1061/(ASCE)EE.1943-7870.0001708
    Publisher: ASCE
    Abstract: It is essential to understand the phenomena of adhesion, deadhesion, and transport of microorganisms in porous media to scale up bioengineering processes. In this study, the adhesion and deadhesion of two ureolytic microorganisms were investigated in loose sand using a set of flow-through column experiments by varying the pore fluid chemistry. An increase in the ionic strength altered the surface-charge properties of the microbes and the selected geomaterial, which in turn reduced the energy barrier, leading to significant adhesion of microbes on the sand surface. After microbial adhesion, permeation of a lower-ionic-strength solution exhibited considerable bacterial deadhesion from the sand column, indicating the reversible nature of the interaction between bacteria and the sand surface. The physicochemical adhesion and deadhesion mechanisms are elucidated in terms of extended Derjaguin-Landau-Verwey-Overbeek theory. The variation of the energy barrier between the microbe and sand, the appearance of primary and secondary energy minima attributed to the change in pore fluid chemistry, and its influence on microbial adhesion and deadhesion on to the sand were also studied.
    • Download: (1.011Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Adhesion and Deadhesion of Ureolytic Bacteria on Sand under Variable Pore Fluid Chemistry

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265378
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorSurabhi Jain
    contributor authorDali Naidu Arnepalli
    date accessioned2022-01-30T19:28:51Z
    date available2022-01-30T19:28:51Z
    date issued2020
    identifier other%28ASCE%29EE.1943-7870.0001708.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265378
    description abstractIt is essential to understand the phenomena of adhesion, deadhesion, and transport of microorganisms in porous media to scale up bioengineering processes. In this study, the adhesion and deadhesion of two ureolytic microorganisms were investigated in loose sand using a set of flow-through column experiments by varying the pore fluid chemistry. An increase in the ionic strength altered the surface-charge properties of the microbes and the selected geomaterial, which in turn reduced the energy barrier, leading to significant adhesion of microbes on the sand surface. After microbial adhesion, permeation of a lower-ionic-strength solution exhibited considerable bacterial deadhesion from the sand column, indicating the reversible nature of the interaction between bacteria and the sand surface. The physicochemical adhesion and deadhesion mechanisms are elucidated in terms of extended Derjaguin-Landau-Verwey-Overbeek theory. The variation of the energy barrier between the microbe and sand, the appearance of primary and secondary energy minima attributed to the change in pore fluid chemistry, and its influence on microbial adhesion and deadhesion on to the sand were also studied.
    publisherASCE
    titleAdhesion and Deadhesion of Ureolytic Bacteria on Sand under Variable Pore Fluid Chemistry
    typeJournal Paper
    journal volume146
    journal issue6
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0001708
    page04020038
    treeJournal of Environmental Engineering:;2020:;Volume ( 146 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian