contributor author | Wen-Jun Liang | |
contributor author | Di Liu | |
contributor author | Si-da Ren | |
contributor author | Qing-Lei Li | |
date accessioned | 2022-01-30T19:28:44Z | |
date available | 2022-01-30T19:28:44Z | |
date issued | 2020 | |
identifier other | %28ASCE%29EE.1943-7870.0001704.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4265374 | |
description abstract | This work attempts to optimize the traditional flow-reverse reactor by establishing a three-dimensional model of a toluene catalytic-combustion reactor through computational fluid dynamics (CFD). Four optimized structures are designed: (1) 20-mm grille; (2) 60-mm-long lattice plates; (3) 20-mm-long cross plate and 5-mm-thick cross plate; and (4) 20-mm-long lattice and 20-mm-long and 5-mm-thick cross plate. The velocity field, pressure drop, temperature field, and turbulent energy were calculated. The results show that the area-weighted evenness index of the four structures can reach (1) 0.910; (2) 0.901; (3) 0.909; and (4) 0.920. The results also show that the reactor with a 20-mm grid and 5-mm porous plate had the best optimization effect. Based on the reactor, the maximum resistance coefficient of the optimized flow direction conversion reactor was 0.030, meeting the engineering requirements. The results from the temperature fields show that the reactor with increased flow direction greatly improved the utilization of waste heat. It was also confirmed that the optimization had a certain guiding significance and value for practical application. | |
publisher | ASCE | |
title | CFD Simulation and Optimization of Flow-Reverse Catalytic-Combustion Reactor | |
type | Journal Paper | |
journal volume | 146 | |
journal issue | 6 | |
journal title | Journal of Environmental Engineering | |
identifier doi | 10.1061/(ASCE)EE.1943-7870.0001704 | |
page | 04020043 | |
tree | Journal of Environmental Engineering:;2020:;Volume ( 146 ):;issue: 006 | |
contenttype | Fulltext | |