YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Recognition of High-Risk Scenarios in Building Construction Based on Image Semantics

    Source: Journal of Computing in Civil Engineering:;2020:;Volume ( 034 ):;issue: 004
    Author:
    Mingyuan Zhang
    ,
    Mi Zhu
    ,
    Xuefeng Zhao
    DOI: 10.1061/(ASCE)CP.1943-5487.0000900
    Publisher: ASCE
    Abstract: The action analysis and semantic interpretation of images have recently attracted increased attention in the field of computer vision. However, it is difficult for an intelligent monitoring method based on computer vision to understand complex scenarios and describe hazardous events from a surveillance video. To identify risks in a construction process and prevent construction accidents, an automatic identification method combining object detection and ontology is proposed. First, a faster region-convolutional neural network is used to extract low-level semantic information from scene elements and element spatial relationship attributes from images exported from a surveillance video. Second, an ontology semantic network is established within the scope of a construction scene, and logical language of the ontology is used to transform the low-level semantic information of images into high-level semantics of event descriptions. Third, construction risk rules are translated into ontology rules, and high-risk situations that may arise at the construction site are identified by a Pellet inference engine. Finally, a foundation pit excavation scene is taken as an example, and test results are used to verify the feasibility and effectiveness of the proposed method. The proposed method can be used to improve the efficiency of construction safety management.
    • Download: (4.241Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Recognition of High-Risk Scenarios in Building Construction Based on Image Semantics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265269
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorMingyuan Zhang
    contributor authorMi Zhu
    contributor authorXuefeng Zhao
    date accessioned2022-01-30T19:25:16Z
    date available2022-01-30T19:25:16Z
    date issued2020
    identifier other%28ASCE%29CP.1943-5487.0000900.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265269
    description abstractThe action analysis and semantic interpretation of images have recently attracted increased attention in the field of computer vision. However, it is difficult for an intelligent monitoring method based on computer vision to understand complex scenarios and describe hazardous events from a surveillance video. To identify risks in a construction process and prevent construction accidents, an automatic identification method combining object detection and ontology is proposed. First, a faster region-convolutional neural network is used to extract low-level semantic information from scene elements and element spatial relationship attributes from images exported from a surveillance video. Second, an ontology semantic network is established within the scope of a construction scene, and logical language of the ontology is used to transform the low-level semantic information of images into high-level semantics of event descriptions. Third, construction risk rules are translated into ontology rules, and high-risk situations that may arise at the construction site are identified by a Pellet inference engine. Finally, a foundation pit excavation scene is taken as an example, and test results are used to verify the feasibility and effectiveness of the proposed method. The proposed method can be used to improve the efficiency of construction safety management.
    publisherASCE
    titleRecognition of High-Risk Scenarios in Building Construction Based on Image Semantics
    typeJournal Paper
    journal volume34
    journal issue4
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000900
    page04020019
    treeJournal of Computing in Civil Engineering:;2020:;Volume ( 034 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian