YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Crack Detection and Segmentation Using Deep Learning with 3D Reality Mesh Model for Quantitative Assessment and Integrated Visualization

    Source: Journal of Computing in Civil Engineering:;2020:;Volume ( 034 ):;issue: 003
    Author:
    Rony Kalfarisi
    ,
    Zheng Yi Wu
    ,
    Ken Soh
    DOI: 10.1061/(ASCE)CP.1943-5487.0000890
    Publisher: ASCE
    Abstract: Crack detection has been an active research topic for civil infrastructure inspection. Over the last few years, many research efforts have focused on applying deep learning-based techniques to automatically detect cracks in images. Good results have been reported with bounding boxes around the detected cracks in images. However, there is no accurate crack segmentation, quantitative assessment, or integrated visualization in the context of engineering structures. In addition, most previously developed deep learning-based crack detection models have been trained with homogenous images collected under controlled conditions, rather than applying the models to images collected during real-world infrastructure inspections. In this paper, two deep learning-based approaches are developed for crack detection and segmentation. The first approach is to integrate the faster region-based convolutional neural network (FRCNN) with structured random forest edge detection (SRFED). The FRCNN is used to detect cracks with bounding boxes while SRFED is applied to segment the cracks within the boxes. The second approach is to directly apply Mask RCNN for crack detection and segmentation. The models have been trained with diverse images collected during real-world infrastructure inspections, enhancing the broad applicability of the models. Both approaches have been applied in a unified framework using three-dimensional (3D) reality mesh-modeling technology that enables quantitative assessment with the integrated visualization of an inspected structure. The effectiveness and robustness of the developed techniques are evaluated and demonstrated using various real cases including bridges, road pavements, underground tunnels, water towers, and buildings.
    • Download: (6.005Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Crack Detection and Segmentation Using Deep Learning with 3D Reality Mesh Model for Quantitative Assessment and Integrated Visualization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265258
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorRony Kalfarisi
    contributor authorZheng Yi Wu
    contributor authorKen Soh
    date accessioned2022-01-30T19:24:58Z
    date available2022-01-30T19:24:58Z
    date issued2020
    identifier other%28ASCE%29CP.1943-5487.0000890.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265258
    description abstractCrack detection has been an active research topic for civil infrastructure inspection. Over the last few years, many research efforts have focused on applying deep learning-based techniques to automatically detect cracks in images. Good results have been reported with bounding boxes around the detected cracks in images. However, there is no accurate crack segmentation, quantitative assessment, or integrated visualization in the context of engineering structures. In addition, most previously developed deep learning-based crack detection models have been trained with homogenous images collected under controlled conditions, rather than applying the models to images collected during real-world infrastructure inspections. In this paper, two deep learning-based approaches are developed for crack detection and segmentation. The first approach is to integrate the faster region-based convolutional neural network (FRCNN) with structured random forest edge detection (SRFED). The FRCNN is used to detect cracks with bounding boxes while SRFED is applied to segment the cracks within the boxes. The second approach is to directly apply Mask RCNN for crack detection and segmentation. The models have been trained with diverse images collected during real-world infrastructure inspections, enhancing the broad applicability of the models. Both approaches have been applied in a unified framework using three-dimensional (3D) reality mesh-modeling technology that enables quantitative assessment with the integrated visualization of an inspected structure. The effectiveness and robustness of the developed techniques are evaluated and demonstrated using various real cases including bridges, road pavements, underground tunnels, water towers, and buildings.
    publisherASCE
    titleCrack Detection and Segmentation Using Deep Learning with 3D Reality Mesh Model for Quantitative Assessment and Integrated Visualization
    typeJournal Paper
    journal volume34
    journal issue3
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000890
    page04020010
    treeJournal of Computing in Civil Engineering:;2020:;Volume ( 034 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian