YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Static Performance of a Long-Span Concrete Cable-Stayed Bridge Subjected to Multiple-Cable Loss during Construction

    Source: Journal of Bridge Engineering:;2020:;Volume ( 025 ):;issue: 003
    Author:
    Yu Zhang
    ,
    Zhi Fang
    ,
    Ruinian Jiang
    ,
    Yu Xiang
    ,
    Haibin Long
    ,
    Jiangbo Lu
    DOI: 10.1061/(ASCE)BE.1943-5592.0001529
    Publisher: ASCE
    Abstract: To study the structural response of a long-span cable-stayed bridge to cable loss during construction, the static performance of the Chishi Bridge subjected to multiple-cable loss caused by a fire accident was investigated in detail by field inspection and finite-element simulation. Nine cables on the same cable plane ruptured successively during the fire accident. As a result, the cantilever end of the girder dropped by 2.08 m, and the girder cracked severely. The cable tension, the displacements, and the damage state in the girder and pylon were measured to verify the nonlinear finite-element model. A comprehensive numerical study was then conducted to analyze the structural behavior of the bridge throughout the process of cable loss and subsequent restoration. The results from the field inspection and simulation showed that (1) the obvious change in cable tension and concrete cracking occurred in only the remaining cables and part of the girder within and around the cable loss area; (2) the loss of nine cables in the local area caused the combined action of torsion and biaxial bending in the girder, and resulted in dense distribution of diagonal cracks in the top slab and box girder webs; (3) after the accident, the maximum tensile stresses in the remaining cables and prestressed tendons reached 1,495 and 1,546 MPa, or 89.3% and 92.3% of the yield strength of steel strands, respectively, while the maximum principal compressive stress in the box girder reached 29.8 MPa, or 83.9% of the concrete compressive strength; and (4) the global structural performance of the damaged bridge recovered very well when the temporary cables that were added to replace the broken cables were jacked to the original design tension, indicating that the global behavior of the cable-stayed bridge was mostly controlled by the cables.
    • Download: (6.975Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Static Performance of a Long-Span Concrete Cable-Stayed Bridge Subjected to Multiple-Cable Loss during Construction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265220
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorYu Zhang
    contributor authorZhi Fang
    contributor authorRuinian Jiang
    contributor authorYu Xiang
    contributor authorHaibin Long
    contributor authorJiangbo Lu
    date accessioned2022-01-30T19:23:49Z
    date available2022-01-30T19:23:49Z
    date issued2020
    identifier other%28ASCE%29BE.1943-5592.0001529.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265220
    description abstractTo study the structural response of a long-span cable-stayed bridge to cable loss during construction, the static performance of the Chishi Bridge subjected to multiple-cable loss caused by a fire accident was investigated in detail by field inspection and finite-element simulation. Nine cables on the same cable plane ruptured successively during the fire accident. As a result, the cantilever end of the girder dropped by 2.08 m, and the girder cracked severely. The cable tension, the displacements, and the damage state in the girder and pylon were measured to verify the nonlinear finite-element model. A comprehensive numerical study was then conducted to analyze the structural behavior of the bridge throughout the process of cable loss and subsequent restoration. The results from the field inspection and simulation showed that (1) the obvious change in cable tension and concrete cracking occurred in only the remaining cables and part of the girder within and around the cable loss area; (2) the loss of nine cables in the local area caused the combined action of torsion and biaxial bending in the girder, and resulted in dense distribution of diagonal cracks in the top slab and box girder webs; (3) after the accident, the maximum tensile stresses in the remaining cables and prestressed tendons reached 1,495 and 1,546 MPa, or 89.3% and 92.3% of the yield strength of steel strands, respectively, while the maximum principal compressive stress in the box girder reached 29.8 MPa, or 83.9% of the concrete compressive strength; and (4) the global structural performance of the damaged bridge recovered very well when the temporary cables that were added to replace the broken cables were jacked to the original design tension, indicating that the global behavior of the cable-stayed bridge was mostly controlled by the cables.
    publisherASCE
    titleStatic Performance of a Long-Span Concrete Cable-Stayed Bridge Subjected to Multiple-Cable Loss during Construction
    typeJournal Paper
    journal volume25
    journal issue3
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001529
    page04020002
    treeJournal of Bridge Engineering:;2020:;Volume ( 025 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian