YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Temporal Evolution of Clear-Water Local Scour at Aligned and Skewed Complex Bridge Piers

    Source: Journal of Hydraulic Engineering:;2020:;Volume ( 146 ):;issue: 004
    Author:
    Yifan Yang
    ,
    Bruce W. Melville
    ,
    Graham H. Macky
    ,
    Asaad Y. Shamseldin
    DOI: 10.1061/(ASCE)HY.1943-7900.0001732
    Publisher: ASCE
    Abstract: Scour at bridge piers is time-dependent. In this paper, temporal evolution of clear-water scour at complex bridge piers is studied experimentally. The pier model has a typical form comprising three components, namely a rectangular column, a rectangular pile-cap, and a group of vertical piles underneath. Various relative pile-cap positions and skew angles (α) from 0° to 45° were used to investigate their influence on scour evolution. New functions are proposed to fit temporal data and determine the equilibrium scour depth with better accuracy. The results show that the locations for scour initiation and the maximum scour depth may be different, and their relationship varies with pile-cap position and pier skew angle. Highly skewed piers tend to overcome the influence of width ratio of column to pile-cap (Dc/Dpc) on scour evolution, as the column itself becomes dominant. The sensitivity of scour evolution to pier skew angle decreases with higher pile-cap position, especially when it is entirely above the original bed. Four scour development stages were identified for complex piers, including initiation, stagnation, a developing stage, and equilibrium, with each stage being highly dependent on the degree of exposure of each of the pier components. The description of each development stage for different situations is given. The equilibrium time scale t* and the equilibrium scour depth dse for complex piers have similar dependence on flow shallowness ratio (y0/De) and sediment coarseness ratio (De/d50), as per the equation proposed by an authors’ previous study (Yang et al. 2018). A new equation is proposed to correct the percentage rate of scour development. The correction is especially useful for aligned complex piers, for which the rate of scour time development may be much lower than that for single-column piers. In general, we recommend using the modified Sheppard-Melville method and the corrected time-scale equation in this paper to predict clear-water equilibrium scour depth and scour evolution at complex bridge piers.
    • Download: (4.260Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Temporal Evolution of Clear-Water Local Scour at Aligned and Skewed Complex Bridge Piers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265209
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorYifan Yang
    contributor authorBruce W. Melville
    contributor authorGraham H. Macky
    contributor authorAsaad Y. Shamseldin
    date accessioned2022-01-30T19:23:33Z
    date available2022-01-30T19:23:33Z
    date issued2020
    identifier other%28ASCE%29HY.1943-7900.0001732.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265209
    description abstractScour at bridge piers is time-dependent. In this paper, temporal evolution of clear-water scour at complex bridge piers is studied experimentally. The pier model has a typical form comprising three components, namely a rectangular column, a rectangular pile-cap, and a group of vertical piles underneath. Various relative pile-cap positions and skew angles (α) from 0° to 45° were used to investigate their influence on scour evolution. New functions are proposed to fit temporal data and determine the equilibrium scour depth with better accuracy. The results show that the locations for scour initiation and the maximum scour depth may be different, and their relationship varies with pile-cap position and pier skew angle. Highly skewed piers tend to overcome the influence of width ratio of column to pile-cap (Dc/Dpc) on scour evolution, as the column itself becomes dominant. The sensitivity of scour evolution to pier skew angle decreases with higher pile-cap position, especially when it is entirely above the original bed. Four scour development stages were identified for complex piers, including initiation, stagnation, a developing stage, and equilibrium, with each stage being highly dependent on the degree of exposure of each of the pier components. The description of each development stage for different situations is given. The equilibrium time scale t* and the equilibrium scour depth dse for complex piers have similar dependence on flow shallowness ratio (y0/De) and sediment coarseness ratio (De/d50), as per the equation proposed by an authors’ previous study (Yang et al. 2018). A new equation is proposed to correct the percentage rate of scour development. The correction is especially useful for aligned complex piers, for which the rate of scour time development may be much lower than that for single-column piers. In general, we recommend using the modified Sheppard-Melville method and the corrected time-scale equation in this paper to predict clear-water equilibrium scour depth and scour evolution at complex bridge piers.
    publisherASCE
    titleTemporal Evolution of Clear-Water Local Scour at Aligned and Skewed Complex Bridge Piers
    typeJournal Paper
    journal volume146
    journal issue4
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0001732
    page04020026
    treeJournal of Hydraulic Engineering:;2020:;Volume ( 146 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian