YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Utilizing Computer Vision and Fuzzy Inference to Evaluate Level of Collision Safety for Workers and Equipment in a Dynamic Environment

    Source: Journal of Construction Engineering and Management:;2020:;Volume ( 146 ):;issue: 006
    Author:
    Mingyuan Zhang
    ,
    Zhiying Cao
    ,
    Zhen Yang
    ,
    Xuefeng Zhao
    DOI: 10.1061/(ASCE)CO.1943-7862.0001802
    Publisher: ASCE
    Abstract: The construction industry is facing unique problems in accident prevention. The existing management method for detecting workers’ unsafe behaviors and unsafe states of objects relies primarily on manual monitoring, which does not only consume large amounts of time and money but also cannot cover all workers in the entire construction site. Meanwhile, the workers’ perception of being at risk of injury decreases when they are concentrated in a crowded and noisy environment. In this case, it is difficult for them to take essential measures to protect themselves in the face of danger. In view of the aforementioned issues, this study proposes a method of evaluating the collision safety level of construction workers based on computer vision and fuzzy inference. Specifically, the proposed model works via two modules: vision extraction and safety assessment. The vision extraction module identifies construction workers and equipment through computer vision; centroid pixel coordinates and crowdedness are then extracted from a detection box. Afterward, the spatial relationship between moving devices and workers is calculated by a pixel calibration process. In the safety assessment module, the collected status information is analyzed by evaluating the safety level of each worker and conducting accident prevention through a fuzzy inference system. The safety level, which indicates the comprehensive risk of collision between workers and equipment in a particular dynamic environment, will be displayed numerically, breaking through the limitations of conventional qualitative evaluation. Field experiments validate the feasibility of the proposed method of informing workers about potential danger situations in an objective way. Moreover, by setting a safety-level threshold, the onsite safety management personnel can take corresponding measures to avoid collision accidents when the worker’s safety level is lower than the threshold.
    • Download: (2.715Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Utilizing Computer Vision and Fuzzy Inference to Evaluate Level of Collision Safety for Workers and Equipment in a Dynamic Environment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265175
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorMingyuan Zhang
    contributor authorZhiying Cao
    contributor authorZhen Yang
    contributor authorXuefeng Zhao
    date accessioned2022-01-30T19:22:28Z
    date available2022-01-30T19:22:28Z
    date issued2020
    identifier other%28ASCE%29CO.1943-7862.0001802.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265175
    description abstractThe construction industry is facing unique problems in accident prevention. The existing management method for detecting workers’ unsafe behaviors and unsafe states of objects relies primarily on manual monitoring, which does not only consume large amounts of time and money but also cannot cover all workers in the entire construction site. Meanwhile, the workers’ perception of being at risk of injury decreases when they are concentrated in a crowded and noisy environment. In this case, it is difficult for them to take essential measures to protect themselves in the face of danger. In view of the aforementioned issues, this study proposes a method of evaluating the collision safety level of construction workers based on computer vision and fuzzy inference. Specifically, the proposed model works via two modules: vision extraction and safety assessment. The vision extraction module identifies construction workers and equipment through computer vision; centroid pixel coordinates and crowdedness are then extracted from a detection box. Afterward, the spatial relationship between moving devices and workers is calculated by a pixel calibration process. In the safety assessment module, the collected status information is analyzed by evaluating the safety level of each worker and conducting accident prevention through a fuzzy inference system. The safety level, which indicates the comprehensive risk of collision between workers and equipment in a particular dynamic environment, will be displayed numerically, breaking through the limitations of conventional qualitative evaluation. Field experiments validate the feasibility of the proposed method of informing workers about potential danger situations in an objective way. Moreover, by setting a safety-level threshold, the onsite safety management personnel can take corresponding measures to avoid collision accidents when the worker’s safety level is lower than the threshold.
    publisherASCE
    titleUtilizing Computer Vision and Fuzzy Inference to Evaluate Level of Collision Safety for Workers and Equipment in a Dynamic Environment
    typeJournal Paper
    journal volume146
    journal issue6
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)CO.1943-7862.0001802
    page04020051
    treeJournal of Construction Engineering and Management:;2020:;Volume ( 146 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian