YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Crack-Depth Estimation in Concrete Elements Using Ultrasonic Shear-Horizontal Waves

    Source: Journal of Performance of Constructed Facilities:;2020:;Volume ( 034 ):;issue: 004
    Author:
    Shibin Lin
    ,
    Yujin Wang
    DOI: 10.1061/(ASCE)CF.1943-5509.0001473
    Publisher: ASCE
    Abstract: Determination of the depth of surface-opening (visible) cracks is of critical importance for evaluating the structural safety of concrete elements. Accurately determining the crack depth with traditional nondestructive testing methods, however, is challenging. This study developed a new method using ultrasonic shear-horizontal (SH) waves to detect the depth of surface-opening cracks in concrete. The method is based on the diffraction of ultrasonic SH waves at the bottom edge of a crack. An off-the-shelf ultrasonic imaging device was used with dry-point contact transducers having a set of transmitters and a set of receivers performing in a pitch-catch configuration. SH waves are superior to other waves in data interpretation because the SH waves have a higher signal-to-noise ratio as the only wave type generated by their transmitter and without mode conversion after diffraction. Thus, accurately identifying the travel time of diffracted SH waves in the time domain is very achievable. The crack depth can be calculated with the two-way travel time of SH waves, the spacing between the transducers, and the SH-wave speed. The method was validated with a-finite element model and experimental data from two case studies. Results indicated that this method can significantly improve the accuracy of determinations of the depth of surface-open cracks compared with the ultrasonic longitudinal wave method.
    • Download: (3.513Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Crack-Depth Estimation in Concrete Elements Using Ultrasonic Shear-Horizontal Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265105
    Collections
    • Journal of Performance of Constructed Facilities

    Show full item record

    contributor authorShibin Lin
    contributor authorYujin Wang
    date accessioned2022-01-30T19:20:28Z
    date available2022-01-30T19:20:28Z
    date issued2020
    identifier other%28ASCE%29CF.1943-5509.0001473.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265105
    description abstractDetermination of the depth of surface-opening (visible) cracks is of critical importance for evaluating the structural safety of concrete elements. Accurately determining the crack depth with traditional nondestructive testing methods, however, is challenging. This study developed a new method using ultrasonic shear-horizontal (SH) waves to detect the depth of surface-opening cracks in concrete. The method is based on the diffraction of ultrasonic SH waves at the bottom edge of a crack. An off-the-shelf ultrasonic imaging device was used with dry-point contact transducers having a set of transmitters and a set of receivers performing in a pitch-catch configuration. SH waves are superior to other waves in data interpretation because the SH waves have a higher signal-to-noise ratio as the only wave type generated by their transmitter and without mode conversion after diffraction. Thus, accurately identifying the travel time of diffracted SH waves in the time domain is very achievable. The crack depth can be calculated with the two-way travel time of SH waves, the spacing between the transducers, and the SH-wave speed. The method was validated with a-finite element model and experimental data from two case studies. Results indicated that this method can significantly improve the accuracy of determinations of the depth of surface-open cracks compared with the ultrasonic longitudinal wave method.
    publisherASCE
    titleCrack-Depth Estimation in Concrete Elements Using Ultrasonic Shear-Horizontal Waves
    typeJournal Paper
    journal volume34
    journal issue4
    journal titleJournal of Performance of Constructed Facilities
    identifier doi10.1061/(ASCE)CF.1943-5509.0001473
    page04020064
    treeJournal of Performance of Constructed Facilities:;2020:;Volume ( 034 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian