YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quantitative Resistance Assessment of SFRP-Strengthened RC Bridge Columns Subjected to Blast Loads

    Source: Journal of Performance of Constructed Facilities:;2020:;Volume ( 034 ):;issue: 004
    Author:
    Ahmad Alsendi
    ,
    Christopher D. Eamon
    DOI: 10.1061/(ASCE)CF.1943-5509.0001458
    Publisher: ASCE
    Abstract: The blast resistance of a typical reinforced concrete bridge pier column design was modeled with a nonlinear finite element approach that considers material damage, fracture, and separation. While varying concrete strength, amount of longitudinal reinforcing steel, and gravity load, the effect of applying an externally bonded steel fiber reinforced polymer (SFRP) wrapping was assessed. The presented approach uniquely quantifies column blast resistance in terms of charge weight. It was found that blast capacity was roughly linearly related to concrete strength and steel reinforcement ratio, the former of which is most influential. It was further found that a single layer of SFRP modestly increased blast resistance, while additional SFRP layers provided minimal benefit.
    • Download: (2.211Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quantitative Resistance Assessment of SFRP-Strengthened RC Bridge Columns Subjected to Blast Loads

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4265095
    Collections
    • Journal of Performance of Constructed Facilities

    Show full item record

    contributor authorAhmad Alsendi
    contributor authorChristopher D. Eamon
    date accessioned2022-01-30T19:20:11Z
    date available2022-01-30T19:20:11Z
    date issued2020
    identifier other%28ASCE%29CF.1943-5509.0001458.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4265095
    description abstractThe blast resistance of a typical reinforced concrete bridge pier column design was modeled with a nonlinear finite element approach that considers material damage, fracture, and separation. While varying concrete strength, amount of longitudinal reinforcing steel, and gravity load, the effect of applying an externally bonded steel fiber reinforced polymer (SFRP) wrapping was assessed. The presented approach uniquely quantifies column blast resistance in terms of charge weight. It was found that blast capacity was roughly linearly related to concrete strength and steel reinforcement ratio, the former of which is most influential. It was further found that a single layer of SFRP modestly increased blast resistance, while additional SFRP layers provided minimal benefit.
    publisherASCE
    titleQuantitative Resistance Assessment of SFRP-Strengthened RC Bridge Columns Subjected to Blast Loads
    typeJournal Paper
    journal volume34
    journal issue4
    journal titleJournal of Performance of Constructed Facilities
    identifier doi10.1061/(ASCE)CF.1943-5509.0001458
    page04020055
    treeJournal of Performance of Constructed Facilities:;2020:;Volume ( 034 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian