YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Establishing Multisource Data-Integration Framework for Transportation Data Analytics

    Source: Journal of Transportation Engineering, Part A: Systems:;2020:;Volume ( 146 ):;issue: 005
    Author:
    Zhiyong Cui
    ,
    Kristian Henrickson
    ,
    Salvatore Antonio Biancardo
    ,
    Ziyuan Pu
    ,
    Yinhai Wang
    DOI: 10.1061/JTEPBS.0000331
    Publisher: ASCE
    Abstract: In recent years, with the advancement in traffic sensing, data storage, and communication technologies, the availability and diversity of transportation data have increased substantially. When the volume and variety of traffic data increase dramatically, integrating multisource traffic data to conduct traffic analysis is becoming a challenging task. The heterogeneous spatiotemporal resolutions of traffic data and the lack of standard geospatial representations of multisource data are the main hurdles for solving the traffic data-integration problem. In this study, to overcome these challenges, a transportation data-integration framework based on a uniform geospatial roadway referencing layer is proposed. In the framework, on the basis of traffic sensors’ locations and sensing areas, transportation-related data are classified into four categories, including on-road segment-based data, off-road segment-based data, on-road point-based data, and off-road point-based data. Four data-integration solutions are proposed accordingly. An iterative map conflation algorithm as a core component of the framework is proposed for integrating the on-road segment-based data. The overall integration performance of the four types of data and the efficiency of the iterative map conflation algorithm in terms of percentage of integrated roadway segments and computation time are analyzed. To produce efficient transportation analytics, the proposed framework is implemented on an interactive data-driven transportation analytics platform. Based on the implemented framework, several case studies of real-world transportation data analytics are presented and discussed.
    • Download: (4.183Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Establishing Multisource Data-Integration Framework for Transportation Data Analytics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264970
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorZhiyong Cui
    contributor authorKristian Henrickson
    contributor authorSalvatore Antonio Biancardo
    contributor authorZiyuan Pu
    contributor authorYinhai Wang
    date accessioned2022-01-30T19:16:18Z
    date available2022-01-30T19:16:18Z
    date issued2020
    identifier otherJTEPBS.0000331.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264970
    description abstractIn recent years, with the advancement in traffic sensing, data storage, and communication technologies, the availability and diversity of transportation data have increased substantially. When the volume and variety of traffic data increase dramatically, integrating multisource traffic data to conduct traffic analysis is becoming a challenging task. The heterogeneous spatiotemporal resolutions of traffic data and the lack of standard geospatial representations of multisource data are the main hurdles for solving the traffic data-integration problem. In this study, to overcome these challenges, a transportation data-integration framework based on a uniform geospatial roadway referencing layer is proposed. In the framework, on the basis of traffic sensors’ locations and sensing areas, transportation-related data are classified into four categories, including on-road segment-based data, off-road segment-based data, on-road point-based data, and off-road point-based data. Four data-integration solutions are proposed accordingly. An iterative map conflation algorithm as a core component of the framework is proposed for integrating the on-road segment-based data. The overall integration performance of the four types of data and the efficiency of the iterative map conflation algorithm in terms of percentage of integrated roadway segments and computation time are analyzed. To produce efficient transportation analytics, the proposed framework is implemented on an interactive data-driven transportation analytics platform. Based on the implemented framework, several case studies of real-world transportation data analytics are presented and discussed.
    publisherASCE
    titleEstablishing Multisource Data-Integration Framework for Transportation Data Analytics
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000331
    page04020024
    treeJournal of Transportation Engineering, Part A: Systems:;2020:;Volume ( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian