YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of Carbon-Fiber Composite Material in Micropile Structure

    Source: Journal of Performance of Constructed Facilities:;2020:;Volume ( 034 ):;issue: 002
    Author:
    Xin Li
    ,
    Ming-Zhou Bai
    ,
    Tie Li
    ,
    Shu-Mao Qiu
    ,
    Hai Shi
    DOI: 10.1061/(ASCE)CF.1943-5509.0001379
    Publisher: ASCE
    Abstract: The flexural capacity of a single micropile is small, and some additional materials need to be built into the steel pipe to increase the flexural and tensile capacity of the structure. This paper introduced a new type of carbon-fiber micropile structure, and through comparison with a traditional micropile structure with ordinary steel, the carbon-fiber micropile structure is recommended. The results show that under the same geological and load conditions, the maximum pile top displacement of the carbon-fiber composite micropile decreased by 24% compared with that of ordinary micropiles. In addition, the displacement distribution of different pile positions showed that the stress and deformation of the carbon-fiber micropile are more coordinated and the resistance to soil displacement is improved. The maximum internal stress of the carbon-fiber composite micropiles was 1.53 times that of common-material micropiles, a relative increase of 53%, and the stress intensity of the piles was significantly improved. In terms of maximum shear stress, the maximum shear stress of the carbon-fiber composite at the squeezed end of the soil was 1.6 times that of the ordinary steel pipe pile, and the local shear resistance of the pile was improved under the premise of ensuring no brittle fracture.
    • Download: (1.799Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of Carbon-Fiber Composite Material in Micropile Structure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264924
    Collections
    • Journal of Performance of Constructed Facilities

    Show full item record

    contributor authorXin Li
    contributor authorMing-Zhou Bai
    contributor authorTie Li
    contributor authorShu-Mao Qiu
    contributor authorHai Shi
    date accessioned2022-01-30T19:14:41Z
    date available2022-01-30T19:14:41Z
    date issued2020
    identifier other%28ASCE%29CF.1943-5509.0001379.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264924
    description abstractThe flexural capacity of a single micropile is small, and some additional materials need to be built into the steel pipe to increase the flexural and tensile capacity of the structure. This paper introduced a new type of carbon-fiber micropile structure, and through comparison with a traditional micropile structure with ordinary steel, the carbon-fiber micropile structure is recommended. The results show that under the same geological and load conditions, the maximum pile top displacement of the carbon-fiber composite micropile decreased by 24% compared with that of ordinary micropiles. In addition, the displacement distribution of different pile positions showed that the stress and deformation of the carbon-fiber micropile are more coordinated and the resistance to soil displacement is improved. The maximum internal stress of the carbon-fiber composite micropiles was 1.53 times that of common-material micropiles, a relative increase of 53%, and the stress intensity of the piles was significantly improved. In terms of maximum shear stress, the maximum shear stress of the carbon-fiber composite at the squeezed end of the soil was 1.6 times that of the ordinary steel pipe pile, and the local shear resistance of the pile was improved under the premise of ensuring no brittle fracture.
    publisherASCE
    titleApplication of Carbon-Fiber Composite Material in Micropile Structure
    typeJournal Paper
    journal volume34
    journal issue2
    journal titleJournal of Performance of Constructed Facilities
    identifier doi10.1061/(ASCE)CF.1943-5509.0001379
    page04020017
    treeJournal of Performance of Constructed Facilities:;2020:;Volume ( 034 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian