YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Sustainable Water in the Built Environment
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Sustainable Water in the Built Environment
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hydrologic Performance of a Permeable Pavement and Stormwater Harvesting Treatment Train Stormwater Control Measure

    Source: Journal of Sustainable Water in the Built Environment:;2020:;Volume ( 006 ):;issue: 001
    Author:
    Ryan J. Winston
    ,
    Kristi Arend
    ,
    Jay D. Dorsey
    ,
    Jeffrey P. Johnson
    ,
    William F. Hunt
    DOI: 10.1061/JSWBAY.0000889
    Publisher: ASCE
    Abstract: Stormwater runoff from urban development causes undesired impacts to surface waters, including discharge of pollutants, stream erosion, and loss of in-stream habitat. Stormwater control measures (SCMs), such as ponds, wetlands, bioretention cells, and permeable pavements, are employed to ameliorate these impacts. A treatment train SCM was constructed and monitored in the parking lot at Old Woman Creek National Estuarine Research Reserve in Huron, Ohio. Native soils beneath this parking lot were heavy clay with measured average infiltration rates of 0.046  mm/h. The treatment train consisted of permeable interlocking concrete pavement (PICP) parking stalls that provided pretreatment for an underground stormwater harvesting system. The treatment train was intensively monitored for 13 months to quantify the water balance. The average postconstruction drawdown rate was 0.064  mm/h from the scarified soil beneath the permeable pavement, suggesting that if soil compaction imparted during construction is broken up, preconstruction soil testing provides representative estimates of postconstruction infiltration performance for permeable pavement. While stormwater stored in the cistern was never harvested during the monitoring period, total runoff volume was reduced significantly by 27% through infiltration into the underlying soils. Peak outflow rates were significantly reduced by 93.8%±10%. This was primarily related to slow exfiltration from the scarified soil underlying the permeable pavement. Additional (minor) exfiltration occurred due to an unintentional leak in the cistern, creating storage for follow-on events. These results suggest that scarifying the subsoil beneath permeable pavement without an internal water storage zone can lead to a modest amount of storage for stormwater in the subgrade (perhaps 2.5–5 cm below the underdrain invert), which would provide otherwise unrealized opportunities for exfiltration during inter-event periods. This treatment train SCM appears promising for reducing runoff volume and peak flow rate, particularly if a dedicated, year-round water use could be provided to drain the cistern between wet-weather events.
    • Download: (3.118Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hydrologic Performance of a Permeable Pavement and Stormwater Harvesting Treatment Train Stormwater Control Measure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264891
    Collections
    • Journal of Sustainable Water in the Built Environment

    Show full item record

    contributor authorRyan J. Winston
    contributor authorKristi Arend
    contributor authorJay D. Dorsey
    contributor authorJeffrey P. Johnson
    contributor authorWilliam F. Hunt
    date accessioned2022-01-30T19:13:36Z
    date available2022-01-30T19:13:36Z
    date issued2020
    identifier otherJSWBAY.0000889.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264891
    description abstractStormwater runoff from urban development causes undesired impacts to surface waters, including discharge of pollutants, stream erosion, and loss of in-stream habitat. Stormwater control measures (SCMs), such as ponds, wetlands, bioretention cells, and permeable pavements, are employed to ameliorate these impacts. A treatment train SCM was constructed and monitored in the parking lot at Old Woman Creek National Estuarine Research Reserve in Huron, Ohio. Native soils beneath this parking lot were heavy clay with measured average infiltration rates of 0.046  mm/h. The treatment train consisted of permeable interlocking concrete pavement (PICP) parking stalls that provided pretreatment for an underground stormwater harvesting system. The treatment train was intensively monitored for 13 months to quantify the water balance. The average postconstruction drawdown rate was 0.064  mm/h from the scarified soil beneath the permeable pavement, suggesting that if soil compaction imparted during construction is broken up, preconstruction soil testing provides representative estimates of postconstruction infiltration performance for permeable pavement. While stormwater stored in the cistern was never harvested during the monitoring period, total runoff volume was reduced significantly by 27% through infiltration into the underlying soils. Peak outflow rates were significantly reduced by 93.8%±10%. This was primarily related to slow exfiltration from the scarified soil underlying the permeable pavement. Additional (minor) exfiltration occurred due to an unintentional leak in the cistern, creating storage for follow-on events. These results suggest that scarifying the subsoil beneath permeable pavement without an internal water storage zone can lead to a modest amount of storage for stormwater in the subgrade (perhaps 2.5–5 cm below the underdrain invert), which would provide otherwise unrealized opportunities for exfiltration during inter-event periods. This treatment train SCM appears promising for reducing runoff volume and peak flow rate, particularly if a dedicated, year-round water use could be provided to drain the cistern between wet-weather events.
    publisherASCE
    titleHydrologic Performance of a Permeable Pavement and Stormwater Harvesting Treatment Train Stormwater Control Measure
    typeJournal Paper
    journal volume6
    journal issue1
    journal titleJournal of Sustainable Water in the Built Environment
    identifier doi10.1061/JSWBAY.0000889
    page04019011
    treeJournal of Sustainable Water in the Built Environment:;2020:;Volume ( 006 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian