YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Leak Detection and Topology Identification in Pipelines Using Fluid Transients and Artificial Neural Networks

    Source: Journal of Water Resources Planning and Management:;2020:;Volume ( 146 ):;issue: 006
    Author:
    Jessica Bohorquez
    ,
    Bradley Alexander
    ,
    Angus R. Simpson
    ,
    Martin F. Lambert
    DOI: 10.1061/(ASCE)WR.1943-5452.0001187
    Publisher: ASCE
    Abstract: Condition assessment of water pipelines using fluid transient waves is a noninvasive technique that has been investigated for the past 25 years. Approaches to identify different anomalies and to identify elements of the topology of a pipeline have been proposed but often require detailed modeling and knowledge of the system. On the other hand, artificial neural networks (ANN) have become a useful tool in a range of different fields by enabling a computer to solve a problem without being explicitly programmed to do so, but rather by learning from a series of known examples. This paper presents a new methodology that uses ANNs to predict the presence of features in a pipeline. First, the location and characteristics of a junction have been predicted as a way to identify elements of the topology of a pipeline followed by identification of the location and sizing of a leak. The ANN characteristics and training approaches have been determined for both the junction and the leak example. Results show that the ANN that has been designed for this research is able to accurately predict the location of a junction with an error in this estimation of 2.32 m (out of a 1,000 m long pipeline) or less in 95% of the tested cases. The prediction of the two different diameters on either side of the junction was extremely accurate with only one misidentification of one of the diameters in the 5,000 tested examples. When the ANN was trained and tested to locate and size a leak, the results were also successful. A total of 95% of the tested examples located the leak with an error equal or less than 3.0 m (out of a 1,000 m pipe length) and the leak size was predicted with an average absolute error of only 0.31 mm. The results presented in this paper demonstrate the potential of combining the use of both fluid transient pressure waves and ANNs for the detection of features in pipelines.
    • Download: (2.072Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Leak Detection and Topology Identification in Pipelines Using Fluid Transients and Artificial Neural Networks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264702
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorJessica Bohorquez
    contributor authorBradley Alexander
    contributor authorAngus R. Simpson
    contributor authorMartin F. Lambert
    date accessioned2022-01-30T19:07:39Z
    date available2022-01-30T19:07:39Z
    date issued2020
    identifier other%28ASCE%29WR.1943-5452.0001187.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264702
    description abstractCondition assessment of water pipelines using fluid transient waves is a noninvasive technique that has been investigated for the past 25 years. Approaches to identify different anomalies and to identify elements of the topology of a pipeline have been proposed but often require detailed modeling and knowledge of the system. On the other hand, artificial neural networks (ANN) have become a useful tool in a range of different fields by enabling a computer to solve a problem without being explicitly programmed to do so, but rather by learning from a series of known examples. This paper presents a new methodology that uses ANNs to predict the presence of features in a pipeline. First, the location and characteristics of a junction have been predicted as a way to identify elements of the topology of a pipeline followed by identification of the location and sizing of a leak. The ANN characteristics and training approaches have been determined for both the junction and the leak example. Results show that the ANN that has been designed for this research is able to accurately predict the location of a junction with an error in this estimation of 2.32 m (out of a 1,000 m long pipeline) or less in 95% of the tested cases. The prediction of the two different diameters on either side of the junction was extremely accurate with only one misidentification of one of the diameters in the 5,000 tested examples. When the ANN was trained and tested to locate and size a leak, the results were also successful. A total of 95% of the tested examples located the leak with an error equal or less than 3.0 m (out of a 1,000 m pipe length) and the leak size was predicted with an average absolute error of only 0.31 mm. The results presented in this paper demonstrate the potential of combining the use of both fluid transient pressure waves and ANNs for the detection of features in pipelines.
    publisherASCE
    titleLeak Detection and Topology Identification in Pipelines Using Fluid Transients and Artificial Neural Networks
    typeJournal Paper
    journal volume146
    journal issue6
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001187
    page04020040
    treeJournal of Water Resources Planning and Management:;2020:;Volume ( 146 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian