YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Integrated Design of Dam Size and Operations via Reinforcement Learning

    Source: Journal of Water Resources Planning and Management:;2020:;Volume ( 146 ):;issue: 004
    Author:
    Federica Bertoni
    ,
    Matteo Giuliani
    ,
    Andrea Castelletti
    DOI: 10.1061/(ASCE)WR.1943-5452.0001182
    Publisher: ASCE
    Abstract: In the water systems analysis literature and practice, planning (i.e., dam sizing) and management (i.e., operation design) have been for long time addressed as two weakly interconnected problems, and this often resulted in oversized, poorly performing infrastructures. Recently, several authors started exploring the interdependent nature of these two problems, introducing new integrated approaches to simultaneously design water infrastructures and their operations. Yet, the high computational burden is a likely downside of these methods, a large share of which require solving one optimal operation design problem for every candidate dam size, making it unfeasible to explore the entire planning and associated operation decision space. This paper contributes a novel reinforcement learning (RL)-based approach to integrate dam sizing and operation design while significantly containing computational costs with respect to alternative state-of-the-art methods. The approach first optimizes a single operating policy parametric in the dam size and then searches for the best reservoir size operated using this policy. The parametric policy is computed through a novel batch-mode RL algorithm, called Planning Fitted Q-Iteration (pFQI). The proposed RL approach is tested on a numerical case study, where the water infrastructure must be sized and operated to meet downstream users’ water demand while minimizing construction costs. Results show that the proposed RL approach is able to identify more efficient system configurations with respect to traditional sizing approaches that neglect the optimal operation design phase. Furthermore, when compared with other integrated approaches, the pFQI algorithm is proven to be computationally more efficient.
    • Download: (654.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Integrated Design of Dam Size and Operations via Reinforcement Learning

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264696
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorFederica Bertoni
    contributor authorMatteo Giuliani
    contributor authorAndrea Castelletti
    date accessioned2022-01-30T19:07:32Z
    date available2022-01-30T19:07:32Z
    date issued2020
    identifier other%28ASCE%29WR.1943-5452.0001182.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264696
    description abstractIn the water systems analysis literature and practice, planning (i.e., dam sizing) and management (i.e., operation design) have been for long time addressed as two weakly interconnected problems, and this often resulted in oversized, poorly performing infrastructures. Recently, several authors started exploring the interdependent nature of these two problems, introducing new integrated approaches to simultaneously design water infrastructures and their operations. Yet, the high computational burden is a likely downside of these methods, a large share of which require solving one optimal operation design problem for every candidate dam size, making it unfeasible to explore the entire planning and associated operation decision space. This paper contributes a novel reinforcement learning (RL)-based approach to integrate dam sizing and operation design while significantly containing computational costs with respect to alternative state-of-the-art methods. The approach first optimizes a single operating policy parametric in the dam size and then searches for the best reservoir size operated using this policy. The parametric policy is computed through a novel batch-mode RL algorithm, called Planning Fitted Q-Iteration (pFQI). The proposed RL approach is tested on a numerical case study, where the water infrastructure must be sized and operated to meet downstream users’ water demand while minimizing construction costs. Results show that the proposed RL approach is able to identify more efficient system configurations with respect to traditional sizing approaches that neglect the optimal operation design phase. Furthermore, when compared with other integrated approaches, the pFQI algorithm is proven to be computationally more efficient.
    publisherASCE
    titleIntegrated Design of Dam Size and Operations via Reinforcement Learning
    typeJournal Paper
    journal volume146
    journal issue4
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001182
    page04020010
    treeJournal of Water Resources Planning and Management:;2020:;Volume ( 146 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian