YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiobjective Spatial Pumping Optimization for Groundwater Management in a Multiaquifer System

    Source: Journal of Water Resources Planning and Management:;2020:;Volume ( 146 ):;issue: 004
    Author:
    Jina Yin
    ,
    Hai V. Pham
    ,
    Frank T.-C. Tsai
    DOI: 10.1061/(ASCE)WR.1943-5452.0001180
    Publisher: ASCE
    Abstract: Challenges exist in managing groundwater resources because of spatiotemporally variable pumping activities as well as complex subsurface hydrogeology. In addition, excessive water exploitation induces an imbalance among multistakeholder benefits. In this study, a nonlinear high-order multiobjective optimization model was constructed to derive optimal freshwater pumping strategies and explore the optimality through regulation of pumping locations. Three objectives concerning water supply, energy cost, and environmental problems were formulated into a groundwater management framework that maximizes the total groundwater withdrawal from potential wells and minimizes the total energy cost for well pumping, and groundwater level variations at monitoring locations. Binary variables were incorporated into the groundwater management model to control the operative status of the pumping wells. An improved Nondominated Sorting Genetic Algorithm II (NSGA-II) was developed to increase solution convergence and linked with a high-fidelity groundwater model (MODFLOW-2005) to solve the optimization problem. The improved NSGA-II was expedited on a parallel computing platform to alleviate the computational burden. The effectiveness of the proposed methodology was demonstrated by an application to the Baton Rouge multiaquifer system in southeastern Louisiana. Nondominated trade-off solutions were successfully achieved through the proposed approach and were an optimum with regard to the goals and corresponding consequences. Operative status of the pumping wells, pumping rates, and distances from observation wells to the pumping wells produced distinctive optimization responses. In conclusion, the proposed approach is an appealing method for determining the optimal extent to which the three objectives concerning water supply, energy cost, and environmental problems can be achieved.
    • Download: (3.083Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiobjective Spatial Pumping Optimization for Groundwater Management in a Multiaquifer System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264694
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorJina Yin
    contributor authorHai V. Pham
    contributor authorFrank T.-C. Tsai
    date accessioned2022-01-30T19:07:30Z
    date available2022-01-30T19:07:30Z
    date issued2020
    identifier other%28ASCE%29WR.1943-5452.0001180.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264694
    description abstractChallenges exist in managing groundwater resources because of spatiotemporally variable pumping activities as well as complex subsurface hydrogeology. In addition, excessive water exploitation induces an imbalance among multistakeholder benefits. In this study, a nonlinear high-order multiobjective optimization model was constructed to derive optimal freshwater pumping strategies and explore the optimality through regulation of pumping locations. Three objectives concerning water supply, energy cost, and environmental problems were formulated into a groundwater management framework that maximizes the total groundwater withdrawal from potential wells and minimizes the total energy cost for well pumping, and groundwater level variations at monitoring locations. Binary variables were incorporated into the groundwater management model to control the operative status of the pumping wells. An improved Nondominated Sorting Genetic Algorithm II (NSGA-II) was developed to increase solution convergence and linked with a high-fidelity groundwater model (MODFLOW-2005) to solve the optimization problem. The improved NSGA-II was expedited on a parallel computing platform to alleviate the computational burden. The effectiveness of the proposed methodology was demonstrated by an application to the Baton Rouge multiaquifer system in southeastern Louisiana. Nondominated trade-off solutions were successfully achieved through the proposed approach and were an optimum with regard to the goals and corresponding consequences. Operative status of the pumping wells, pumping rates, and distances from observation wells to the pumping wells produced distinctive optimization responses. In conclusion, the proposed approach is an appealing method for determining the optimal extent to which the three objectives concerning water supply, energy cost, and environmental problems can be achieved.
    publisherASCE
    titleMultiobjective Spatial Pumping Optimization for Groundwater Management in a Multiaquifer System
    typeJournal Paper
    journal volume146
    journal issue4
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001180
    page04020013
    treeJournal of Water Resources Planning and Management:;2020:;Volume ( 146 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian