YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Short-Term Water Demand Forecasting Using Nonlinear Autoregressive Artificial Neural Networks

    Source: Journal of Water Resources Planning and Management:;2020:;Volume ( 146 ):;issue: 003
    Author:
    Mo’tamad H. Bata
    ,
    Rupp Carriveau
    ,
    David S.-K. Ting
    DOI: 10.1061/(ASCE)WR.1943-5452.0001165
    Publisher: ASCE
    Abstract: Short-term water demand forecasting models address the case of a real-time optimal water pumping schedule. This study focuses on developing artificial neural network (ANN) models to forecast water demand 24 h and 1 week ahead. A number of studies have shown that the relationship between water demand and the driving variables is nonlinear. Two ANN time-series models were developed, a nonlinear autoregressive with exogenous (NARX) model with historical demand and weather data as an exogenous input, and a nonlinear autoregressive (NAR) model with only historical demand as an input. This investigation examines how model structure, length of historical data span, and improvement of an exogenous input can influence model performance. The results show that on average, using a nonlinear ANN model can improve water demand prediction by 18% and 25% when forecasting 24 h and 1 week ahead, respectively. The results also show that training the model (i.e., NARX) with correlated exogenous parameters dropped the error by 30% on average compared with a single-input model. In addition, using historical data for only 4 months compared with 5 years and 1 year decreased the error by 76% and 68% for NARX models and 35% and 33% for NAR models, forecasting 24 h and 1 week ahead, respectively.
    • Download: (782.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Short-Term Water Demand Forecasting Using Nonlinear Autoregressive Artificial Neural Networks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264683
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorMo’tamad H. Bata
    contributor authorRupp Carriveau
    contributor authorDavid S.-K. Ting
    date accessioned2022-01-30T19:07:08Z
    date available2022-01-30T19:07:08Z
    date issued2020
    identifier other%28ASCE%29WR.1943-5452.0001165.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264683
    description abstractShort-term water demand forecasting models address the case of a real-time optimal water pumping schedule. This study focuses on developing artificial neural network (ANN) models to forecast water demand 24 h and 1 week ahead. A number of studies have shown that the relationship between water demand and the driving variables is nonlinear. Two ANN time-series models were developed, a nonlinear autoregressive with exogenous (NARX) model with historical demand and weather data as an exogenous input, and a nonlinear autoregressive (NAR) model with only historical demand as an input. This investigation examines how model structure, length of historical data span, and improvement of an exogenous input can influence model performance. The results show that on average, using a nonlinear ANN model can improve water demand prediction by 18% and 25% when forecasting 24 h and 1 week ahead, respectively. The results also show that training the model (i.e., NARX) with correlated exogenous parameters dropped the error by 30% on average compared with a single-input model. In addition, using historical data for only 4 months compared with 5 years and 1 year decreased the error by 76% and 68% for NARX models and 35% and 33% for NAR models, forecasting 24 h and 1 week ahead, respectively.
    publisherASCE
    titleShort-Term Water Demand Forecasting Using Nonlinear Autoregressive Artificial Neural Networks
    typeJournal Paper
    journal volume146
    journal issue3
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001165
    page04020008
    treeJournal of Water Resources Planning and Management:;2020:;Volume ( 146 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian