YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sub-seasonal statistical forecasts of eastern United States hot temperature events

    Source: Monthly Weather Review:;2020:;volume( ):;issue: -::page 1
    Author:
    Vijverberg, Sem;Schmeits, Maurice;van der Wiel, Karin;Coumou, Dim
    DOI: 10.1175/MWR-D-19-0409.1
    Publisher: American Meteorological Society
    Abstract: Extreme summer temperatures can cause severe societal impacts. Early warnings can aid societal preparedness, but reliable forecasts for extreme temperatures at subseasonal-to-seasonal (S2S) timescales are still missing. Earlier work showed that specific sea surface temperature (SST) patterns over the northern Pacific are precursors of high temperature events in the eastern United States, which might provide skillful forecasts at long-leads (~50 days). However, the verification was based on a single skill metric and a probabilistic forecast was missing. Here, we introduce a novel algorithm that objectively extracts robust precursors from SST linked to a binary target variable. When applied to reanalysis (ERA-5) and climate model data (EC-Earth), we identify robust precursors with the clearest links over the North-Pacific. Different precursors are tested as input for a statistical model to forecast high temperature events. Using multiple skill metrics for verification, we show that daily high temperature events have no predictive skill at long leads. By systematically testing the influence of temporal and spatial aggregation, we find that noise in the target timeseries is an important bottleneck for predicting extreme events on S2S timescales. We show that skill can be increased by a combination of (1) aggregating spatially and/or temporally, (2) lowering the threshold of the target events to increase the base-rate, or (3) add additional variables containing predictive information (soil-moisture). Exploiting these skill-enhancing factors, we obtain forecast skill for moderate heatwaves (i.e. 2 or more hot days closely clustered together in time) up to 50 days lead-time.
    • Download: (20.75Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sub-seasonal statistical forecasts of eastern United States hot temperature events

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264616
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorVijverberg, Sem;Schmeits, Maurice;van der Wiel, Karin;Coumou, Dim
    date accessioned2022-01-30T18:10:43Z
    date available2022-01-30T18:10:43Z
    date copyright10/2/2020 12:00:00 AM
    date issued2020
    identifier issn0027-0644
    identifier othermwrd190409.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264616
    description abstractExtreme summer temperatures can cause severe societal impacts. Early warnings can aid societal preparedness, but reliable forecasts for extreme temperatures at subseasonal-to-seasonal (S2S) timescales are still missing. Earlier work showed that specific sea surface temperature (SST) patterns over the northern Pacific are precursors of high temperature events in the eastern United States, which might provide skillful forecasts at long-leads (~50 days). However, the verification was based on a single skill metric and a probabilistic forecast was missing. Here, we introduce a novel algorithm that objectively extracts robust precursors from SST linked to a binary target variable. When applied to reanalysis (ERA-5) and climate model data (EC-Earth), we identify robust precursors with the clearest links over the North-Pacific. Different precursors are tested as input for a statistical model to forecast high temperature events. Using multiple skill metrics for verification, we show that daily high temperature events have no predictive skill at long leads. By systematically testing the influence of temporal and spatial aggregation, we find that noise in the target timeseries is an important bottleneck for predicting extreme events on S2S timescales. We show that skill can be increased by a combination of (1) aggregating spatially and/or temporally, (2) lowering the threshold of the target events to increase the base-rate, or (3) add additional variables containing predictive information (soil-moisture). Exploiting these skill-enhancing factors, we obtain forecast skill for moderate heatwaves (i.e. 2 or more hot days closely clustered together in time) up to 50 days lead-time.
    publisherAmerican Meteorological Society
    titleSub-seasonal statistical forecasts of eastern United States hot temperature events
    typeJournal Paper
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-19-0409.1
    journal fristpage1
    journal lastpage71
    treeMonthly Weather Review:;2020:;volume( ):;issue: -
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian