YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation on the Capability of Revealing Ocean Swells from Sentinel-1A Wave Spectra Measurements

    Source: Journal of Atmospheric and Oceanic Technology:;2020:;volume( 37 ):;issue: 007::page 1289
    Author:
    Wang, Xuan;Husson, Romain;Jiang, Haoyu;Chen, Ge;Gao, Guoping
    DOI: 10.1175/JTECH-D-19-0060.1
    Publisher: American Meteorological Society
    Abstract: Wave measurements retrieved by Sentinel-1A level-2 ocean (OCN) products are sensitive to swells other than wind seas, and are considered to provide a finer resolution of ocean swells. To assess the capability of swell retrieval globally, OCN products are validated against WAVEWATCH III (WW3) wave spectra for two available incidence angles [“wave mode” (WV); WV1: 23°; WV2: 36°], focused on the integral wave parameters and most energetic wave system of Sentinel-1A. The wave parameter difference between Sentinel-1A and WW3 along antenna look angles for WV1 demonstrates the obvious impact of the nonlinearity influence in the azimuth direction, resulting in an unrealistically high wave height at the low wave frequency, and the spurious split of wave systems in the range direction, due to the vanishing of velocity bunching modulation. WV2 is less pronounced in these two aspects, but tends to shift wave energy to a higher wave frequency in the range direction. The inside discrepancy of wave energy has two noticeable features: the difference in peak wavelengths in the wave spectrum is positively clustered in the azimuth direction and negatively clustered in the range direction; some of the most energetic partitions derived from Sentinel-1A are difficult to assign to any wave systems in WW3. This phenomenon could be related to wind-wave coupling as the azimuth cutoff/WW3 peak wavelength is confined to a ratio below 0.5 for the negative difference between Sentinel-1A and WW3 peak wavelengths and the spectral distance of most energetic wave system in Sentinel-1A highly resembles “swell pools.”
    • Download: (3.589Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation on the Capability of Revealing Ocean Swells from Sentinel-1A Wave Spectra Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264525
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorWang, Xuan;Husson, Romain;Jiang, Haoyu;Chen, Ge;Gao, Guoping
    date accessioned2022-01-30T18:07:17Z
    date available2022-01-30T18:07:17Z
    date copyright7/27/2020 12:00:00 AM
    date issued2020
    identifier issn0739-0572
    identifier otherjtechd190060.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264525
    description abstractWave measurements retrieved by Sentinel-1A level-2 ocean (OCN) products are sensitive to swells other than wind seas, and are considered to provide a finer resolution of ocean swells. To assess the capability of swell retrieval globally, OCN products are validated against WAVEWATCH III (WW3) wave spectra for two available incidence angles [“wave mode” (WV); WV1: 23°; WV2: 36°], focused on the integral wave parameters and most energetic wave system of Sentinel-1A. The wave parameter difference between Sentinel-1A and WW3 along antenna look angles for WV1 demonstrates the obvious impact of the nonlinearity influence in the azimuth direction, resulting in an unrealistically high wave height at the low wave frequency, and the spurious split of wave systems in the range direction, due to the vanishing of velocity bunching modulation. WV2 is less pronounced in these two aspects, but tends to shift wave energy to a higher wave frequency in the range direction. The inside discrepancy of wave energy has two noticeable features: the difference in peak wavelengths in the wave spectrum is positively clustered in the azimuth direction and negatively clustered in the range direction; some of the most energetic partitions derived from Sentinel-1A are difficult to assign to any wave systems in WW3. This phenomenon could be related to wind-wave coupling as the azimuth cutoff/WW3 peak wavelength is confined to a ratio below 0.5 for the negative difference between Sentinel-1A and WW3 peak wavelengths and the spectral distance of most energetic wave system in Sentinel-1A highly resembles “swell pools.”
    publisherAmerican Meteorological Society
    titleEvaluation on the Capability of Revealing Ocean Swells from Sentinel-1A Wave Spectra Measurements
    typeJournal Paper
    journal volume37
    journal issue7
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-19-0060.1
    journal fristpage1289
    journal lastpage1304
    treeJournal of Atmospheric and Oceanic Technology:;2020:;volume( 37 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian