YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Field Evidence of Inverse Energy Cascades in the Surfzone

    Source: Journal of Physical Oceanography:;2020:;volume( 50 ):;issue: 008::page 2315
    Author:
    Elgar, Steve;Raubenheimer, Britt
    DOI: 10.1175/JPO-D-19-0327.1
    Publisher: American Meteorological Society
    Abstract: Low-frequency currents and eddies transport sediment, pathogens, larvae, and heat along the coast and between the shoreline and deeper water. Here, low-frequency currents (between 0.1 and 4.0 mHz) observed in shallow surfzone waters for 120 days during a wide range of wave conditions are compared with theories for generation by instabilities of alongshore currents, by ocean-wave-induced sea surface modulations, and by a nonlinear transfer of energy from breaking waves to low-frequency motions via a two-dimensional inverse energy cascade. For these data, the low-frequency currents are not strongly correlated with shear of the alongshore current, with the strength of the alongshore current, or with wave-group statistics. In contrast, on many occasions, the low-frequency currents are consistent with an inverse energy cascade from breaking waves. The energy of the low-frequency surfzone currents increases with the directional spread of the wave field, consistent with vorticity injection by short-crested breaking waves, and structure functions increase with spatial lags, consistent with a cascade of energy from few-meter-scale vortices to larger-scale motions. These results include the first field evidence for the inverse energy cascade in the surfzone and suggest that breaking waves and nonlinear energy transfers should be considered when estimating nearshore transport processes across and along the coast.
    • Download: (1.063Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Field Evidence of Inverse Energy Cascades in the Surfzone

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264463
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorElgar, Steve;Raubenheimer, Britt
    date accessioned2022-01-30T18:04:56Z
    date available2022-01-30T18:04:56Z
    date copyright8/3/2020 12:00:00 AM
    date issued2020
    identifier issn0022-3670
    identifier otherjpod190327.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264463
    description abstractLow-frequency currents and eddies transport sediment, pathogens, larvae, and heat along the coast and between the shoreline and deeper water. Here, low-frequency currents (between 0.1 and 4.0 mHz) observed in shallow surfzone waters for 120 days during a wide range of wave conditions are compared with theories for generation by instabilities of alongshore currents, by ocean-wave-induced sea surface modulations, and by a nonlinear transfer of energy from breaking waves to low-frequency motions via a two-dimensional inverse energy cascade. For these data, the low-frequency currents are not strongly correlated with shear of the alongshore current, with the strength of the alongshore current, or with wave-group statistics. In contrast, on many occasions, the low-frequency currents are consistent with an inverse energy cascade from breaking waves. The energy of the low-frequency surfzone currents increases with the directional spread of the wave field, consistent with vorticity injection by short-crested breaking waves, and structure functions increase with spatial lags, consistent with a cascade of energy from few-meter-scale vortices to larger-scale motions. These results include the first field evidence for the inverse energy cascade in the surfzone and suggest that breaking waves and nonlinear energy transfers should be considered when estimating nearshore transport processes across and along the coast.
    publisherAmerican Meteorological Society
    titleField Evidence of Inverse Energy Cascades in the Surfzone
    typeJournal Paper
    journal volume50
    journal issue8
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-19-0327.1
    journal fristpage2315
    journal lastpage2321
    treeJournal of Physical Oceanography:;2020:;volume( 50 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian