YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Intraseasonal Variability of Cross-Slope Flow in the Northern South China Sea

    Source: Journal of Physical Oceanography:;2020:;volume( 50 ):;issue: 007::page 2071
    Author:
    Wang, Qiang;Zhou, Weidong;Zeng, Lili;Chen, Ju;He, Yunkai;Wang, Dongxiao
    DOI: 10.1175/JPO-D-19-0293.1
    Publisher: American Meteorological Society
    Abstract: Cross-slope flow plays an important role in the exchange of material, heat, and momentum between the continental shelf and the open sea. In the northern South China Sea (SCS), long-period observations confirm that there is significant cross-slope flow. The variability of this flow is dominated by the intraseasonal component (i.e., the 10–90-day period band) that contributes 74.6% of the total standard deviation. The 10–90-day bandpassed cross-slope flow exhibits almost the same direction vertically in the observed layers, and its first empirical orthogonal function, whose direction is also not changed, contributes 86.7% to its total variance. The strong 10–90-day bandpassed cross-slope flow is phase locked to the boreal winter half year. The intraseasonal variability of cross-slope flow is mainly associated with mesoscale eddies west to the Luzon Strait. The contrasting baroclinic instability growth rates, strong in winter and weak in summer, result in a seasonal cycle of mesoscale eddy kinetic energy, that is, vigorous in winter and weak in summer, which explains the winter phase lock. The interannual variability of baroclinic instability growth rate is mainly determined by the vertical shear of velocity. The strongest vertical shear of velocity from 2014 to 2016 occurred in the winter of 2016/17 and induced the most rapid baroclinic instability growth rate and consequently the largest mesoscale eddy kinetic energy, which resulted in the strongest intraseasonal variability of cross-slope flow. The vertical shear of velocity in the northern SCS is mainly determined by the Luzon Strait transport.
    • Download: (1.544Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Intraseasonal Variability of Cross-Slope Flow in the Northern South China Sea

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264446
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorWang, Qiang;Zhou, Weidong;Zeng, Lili;Chen, Ju;He, Yunkai;Wang, Dongxiao
    date accessioned2022-01-30T18:04:22Z
    date available2022-01-30T18:04:22Z
    date copyright7/13/2020 12:00:00 AM
    date issued2020
    identifier issn0022-3670
    identifier otherjpod190293.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264446
    description abstractCross-slope flow plays an important role in the exchange of material, heat, and momentum between the continental shelf and the open sea. In the northern South China Sea (SCS), long-period observations confirm that there is significant cross-slope flow. The variability of this flow is dominated by the intraseasonal component (i.e., the 10–90-day period band) that contributes 74.6% of the total standard deviation. The 10–90-day bandpassed cross-slope flow exhibits almost the same direction vertically in the observed layers, and its first empirical orthogonal function, whose direction is also not changed, contributes 86.7% to its total variance. The strong 10–90-day bandpassed cross-slope flow is phase locked to the boreal winter half year. The intraseasonal variability of cross-slope flow is mainly associated with mesoscale eddies west to the Luzon Strait. The contrasting baroclinic instability growth rates, strong in winter and weak in summer, result in a seasonal cycle of mesoscale eddy kinetic energy, that is, vigorous in winter and weak in summer, which explains the winter phase lock. The interannual variability of baroclinic instability growth rate is mainly determined by the vertical shear of velocity. The strongest vertical shear of velocity from 2014 to 2016 occurred in the winter of 2016/17 and induced the most rapid baroclinic instability growth rate and consequently the largest mesoscale eddy kinetic energy, which resulted in the strongest intraseasonal variability of cross-slope flow. The vertical shear of velocity in the northern SCS is mainly determined by the Luzon Strait transport.
    publisherAmerican Meteorological Society
    titleIntraseasonal Variability of Cross-Slope Flow in the Northern South China Sea
    typeJournal Paper
    journal volume50
    journal issue7
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-19-0293.1
    journal fristpage2071
    journal lastpage2084
    treeJournal of Physical Oceanography:;2020:;volume( 50 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian