YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Observations of Flow Separation and Mixing around the Northern Palau Island/Ridge

    Source: Journal of Physical Oceanography:;2020:;volume( 50 ):;issue: 009::page 2529
    Author:
    Wijesekera, Hemantha W.;Wesson, Joel C.;Wang, David W.;Teague, William J.;Hallock, Z. R.
    DOI: 10.1175/JPO-D-19-0291.1
    Publisher: American Meteorological Society
    Abstract: Turbulent mixing adjacent to the Velasco Reef and Kyushu–Palau Ridge, off northern Palau in the western equatorial Pacific Ocean, is examined using shipboard and moored observations. The study focuses on a 9-day-long, ship-based microstructure and velocity survey, conducted in November–December 2016. Several sections (9–15 km in length) of microstructure, hydrographic, and velocity fields were acquired over and around the reef, where water depths ranged from 50 to 3000 m. Microstructure profiles were collected while steaming slowly either toward or away from the reef, and underway current surveys were conducted along quasi-rectangular boxes with side lengths of 5–10 km. Near the reef, both tidal and subtidal motions were important, while subtidal motions were stronger away from the reef. Vertical shears of currents and mixing were stronger on the northern and eastern flanks of the reef than on the western flanks. High turbulent kinetic energy dissipation rates, 10−6–10−4 W kg−1, and large values of eddy diffusivities, 10−4–10−2 m2 s−1, with strong turbulent heat fluxes, 100–500 W m−2, were found. Currents flowing along the eastern side separated at the northern tip of the reef and generated submesoscale cyclonic vorticity of about 2–4 times the planetary vorticity. The analysis suggests that a torque, imparted by the turbulent bottom stress, generated the cyclonic vorticity at the northern boundary. The northern reef is associated with high vertical transports resulting from both submesoscale flow convergences and energetic mixing. Even though the area around Palau represents a small footprint of the ocean, vertical velocities and mixing rates are several orders magnitude larger than in the open ocean.
    • Download: (8.505Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Observations of Flow Separation and Mixing around the Northern Palau Island/Ridge

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264444
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorWijesekera, Hemantha W.;Wesson, Joel C.;Wang, David W.;Teague, William J.;Hallock, Z. R.
    date accessioned2022-01-30T18:04:18Z
    date available2022-01-30T18:04:18Z
    date copyright8/17/2020 12:00:00 AM
    date issued2020
    identifier issn0022-3670
    identifier otherjpod190291.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264444
    description abstractTurbulent mixing adjacent to the Velasco Reef and Kyushu–Palau Ridge, off northern Palau in the western equatorial Pacific Ocean, is examined using shipboard and moored observations. The study focuses on a 9-day-long, ship-based microstructure and velocity survey, conducted in November–December 2016. Several sections (9–15 km in length) of microstructure, hydrographic, and velocity fields were acquired over and around the reef, where water depths ranged from 50 to 3000 m. Microstructure profiles were collected while steaming slowly either toward or away from the reef, and underway current surveys were conducted along quasi-rectangular boxes with side lengths of 5–10 km. Near the reef, both tidal and subtidal motions were important, while subtidal motions were stronger away from the reef. Vertical shears of currents and mixing were stronger on the northern and eastern flanks of the reef than on the western flanks. High turbulent kinetic energy dissipation rates, 10−6–10−4 W kg−1, and large values of eddy diffusivities, 10−4–10−2 m2 s−1, with strong turbulent heat fluxes, 100–500 W m−2, were found. Currents flowing along the eastern side separated at the northern tip of the reef and generated submesoscale cyclonic vorticity of about 2–4 times the planetary vorticity. The analysis suggests that a torque, imparted by the turbulent bottom stress, generated the cyclonic vorticity at the northern boundary. The northern reef is associated with high vertical transports resulting from both submesoscale flow convergences and energetic mixing. Even though the area around Palau represents a small footprint of the ocean, vertical velocities and mixing rates are several orders magnitude larger than in the open ocean.
    publisherAmerican Meteorological Society
    titleObservations of Flow Separation and Mixing around the Northern Palau Island/Ridge
    typeJournal Paper
    journal volume50
    journal issue9
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-19-0291.1
    journal fristpage2529
    journal lastpage2559
    treeJournal of Physical Oceanography:;2020:;volume( 50 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian