YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Lagrangian Perspective on the Origins of Denmark Strait Overflow

    Source: Journal of Physical Oceanography:;2020:;volume( 50 ):;issue: 008::page 2393
    Author:
    Saberi, Atousa;Haine, Thomas W. N.;Gelderloos, Renske;Femke de Jong, M.;Furey, Heather;Bower, Amy
    DOI: 10.1175/JPO-D-19-0210.1
    Publisher: American Meteorological Society
    Abstract: The Denmark Strait Overflow (DSO) is an important contributor to the lower limb of the Atlantic meridional overturning circulation (AMOC). Determining DSO formation and its pathways is not only important for local oceanography but also critical to estimating the state and variability of the AMOC. Despite prior attempts to understand the DSO sources, its upstream pathways and circulation remain uncertain due to short-term (3–5 days) variability. This makes it challenging to study the DSO from observations. Given this complexity, this study maps the upstream pathways and along-pathway changes in its water properties, using Lagrangian backtracking of the DSO sources in a realistic numerical ocean simulation. The Lagrangian pathways confirm that several branches contribute to the DSO from the north such as the East Greenland Current (EGC), the separated EGC (sEGC), and the North Icelandic Jet (NIJ). Moreover, the model results reveal additional pathways from south of Iceland, which supplied over 16% of the DSO annually and over 25% of the DSO during winter of 2008, when the NAO index was positive. The southern contribution is about 34% by the end of March. The southern pathways mark a more direct route from the near-surface subpolar North Atlantic to the North Atlantic Deep Water (NADW), and needs to be explored further, with in situ observations.
    • Download: (4.788Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Lagrangian Perspective on the Origins of Denmark Strait Overflow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264422
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorSaberi, Atousa;Haine, Thomas W. N.;Gelderloos, Renske;Femke de Jong, M.;Furey, Heather;Bower, Amy
    date accessioned2022-01-30T18:03:37Z
    date available2022-01-30T18:03:37Z
    date copyright8/13/2020 12:00:00 AM
    date issued2020
    identifier issn0022-3670
    identifier otherjpod190210.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264422
    description abstractThe Denmark Strait Overflow (DSO) is an important contributor to the lower limb of the Atlantic meridional overturning circulation (AMOC). Determining DSO formation and its pathways is not only important for local oceanography but also critical to estimating the state and variability of the AMOC. Despite prior attempts to understand the DSO sources, its upstream pathways and circulation remain uncertain due to short-term (3–5 days) variability. This makes it challenging to study the DSO from observations. Given this complexity, this study maps the upstream pathways and along-pathway changes in its water properties, using Lagrangian backtracking of the DSO sources in a realistic numerical ocean simulation. The Lagrangian pathways confirm that several branches contribute to the DSO from the north such as the East Greenland Current (EGC), the separated EGC (sEGC), and the North Icelandic Jet (NIJ). Moreover, the model results reveal additional pathways from south of Iceland, which supplied over 16% of the DSO annually and over 25% of the DSO during winter of 2008, when the NAO index was positive. The southern contribution is about 34% by the end of March. The southern pathways mark a more direct route from the near-surface subpolar North Atlantic to the North Atlantic Deep Water (NADW), and needs to be explored further, with in situ observations.
    publisherAmerican Meteorological Society
    titleLagrangian Perspective on the Origins of Denmark Strait Overflow
    typeJournal Paper
    journal volume50
    journal issue8
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-19-0210.1
    journal fristpage2393
    journal lastpage2414
    treeJournal of Physical Oceanography:;2020:;volume( 50 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian