YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multidecadal Warming and Density Loss in the Deep Weddell Sea, Antarctica

    Source: Journal of Climate:;2020:;volume( 33 ):;issue: 022::page 9863
    Author:
    Strass, Volker H.;Rohardt, Gerd;Kanzow, Torsten;Hoppema, Mario;Boebel, Olaf
    DOI: 10.1175/JCLI-D-20-0271.1
    Publisher: American Meteorological Society
    Abstract: The World Ocean is estimated to store more than 90% of the excess energy resulting from man-made greenhouse gas–driven radiative forcing as heat. Uncertainties of this estimate are related to undersampling of the subpolar and polar regions and of the depths below 2000 m. Here we present measurements from the Weddell Sea that cover the whole water column down to the sea floor, taken by the same accurate method at locations revisited every few years since 1989. Our results show widespread warming with similar long-term temperature trends below 700-m depth at all sampling sites. The mean heating rate below 2000 m exceeds that of the global ocean by a factor of about 5. Salinity tends to increase—in contrast to other Southern Ocean regions—at most sites and depths below 700 m, but nowhere strongly enough to fully compensate for the warming effect on seawater density, which hence shows a general decrease. In the top 700 m neither temperature nor salinity shows clear trends. A closer look at the vertical distribution of changes along an approximately zonal and a meridional section across the Weddell Gyre reveals that the strongest vertically coherent warming is observed at the flanks of the gyre over the deep continental slopes and at its northern edge where the gyre connects to the Antarctic Circumpolar Current (ACC). Most likely, the warming of the interior Weddell Sea is driven by changes of the Weddell Gyre strength and its interaction with the ACC.
    • Download: (3.126Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multidecadal Warming and Density Loss in the Deep Weddell Sea, Antarctica

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264370
    Collections
    • Journal of Climate

    Show full item record

    contributor authorStrass, Volker H.;Rohardt, Gerd;Kanzow, Torsten;Hoppema, Mario;Boebel, Olaf
    date accessioned2022-01-30T18:01:36Z
    date available2022-01-30T18:01:36Z
    date copyright10/15/2020 12:00:00 AM
    date issued2020
    identifier issn0894-8755
    identifier otherjclid200271.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264370
    description abstractThe World Ocean is estimated to store more than 90% of the excess energy resulting from man-made greenhouse gas–driven radiative forcing as heat. Uncertainties of this estimate are related to undersampling of the subpolar and polar regions and of the depths below 2000 m. Here we present measurements from the Weddell Sea that cover the whole water column down to the sea floor, taken by the same accurate method at locations revisited every few years since 1989. Our results show widespread warming with similar long-term temperature trends below 700-m depth at all sampling sites. The mean heating rate below 2000 m exceeds that of the global ocean by a factor of about 5. Salinity tends to increase—in contrast to other Southern Ocean regions—at most sites and depths below 700 m, but nowhere strongly enough to fully compensate for the warming effect on seawater density, which hence shows a general decrease. In the top 700 m neither temperature nor salinity shows clear trends. A closer look at the vertical distribution of changes along an approximately zonal and a meridional section across the Weddell Gyre reveals that the strongest vertically coherent warming is observed at the flanks of the gyre over the deep continental slopes and at its northern edge where the gyre connects to the Antarctic Circumpolar Current (ACC). Most likely, the warming of the interior Weddell Sea is driven by changes of the Weddell Gyre strength and its interaction with the ACC.
    publisherAmerican Meteorological Society
    titleMultidecadal Warming and Density Loss in the Deep Weddell Sea, Antarctica
    typeJournal Paper
    journal volume33
    journal issue22
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-20-0271.1
    journal fristpage9863
    journal lastpage9881
    treeJournal of Climate:;2020:;volume( 33 ):;issue: 022
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian