YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Biases in CMIP5 Sea Surface Temperature and the Annual Cycle of East African Rainfall

    Source: Journal of Climate:;2020:;volume( 33 ):;issue: 019::page 8209
    Author:
    Lyon, Bradfield
    DOI: 10.1175/JCLI-D-20-0092.1
    Publisher: American Meteorological Society
    Abstract: In much of East Africa, climatological rainfall follows a bimodal distribution characterized by the long rains (March–May) and short rains (October–December). Most CMIP5 coupled models fail to properly simulate this annual cycle, typically reversing the amplitudes of the short and long rains relative to observations. This study investigates how CMIP5 climatological sea surface temperature (SST) biases contribute to simulation errors in the annual cycle of East African rainfall. Monthly biases in CMIP5 climatological SSTs (50°S–50°N) are first identified in historical runs (1979–2005) from 31 models and examined for consistency. An atmospheric general circulation model (AGCM) is then forced with observed SSTs (1979–2005) generating a set of control runs and observed SSTs plus the monthly, multimodel mean SST biases generating a set of “bias” runs for the same period. The control runs generally capture the observed annual cycle of East African rainfall while the bias runs capture prominent CMIP5 annual cycle biases, including too little (much) precipitation during the long rains (short rains) and a 1-month lag in the peak of the long rains relative to observations. Diagnostics reveal the annual cycle biases are associated with seasonally varying north–south- and east–west-oriented SST bias patterns in Indian Ocean and regional-scale atmospheric circulation and stability changes, the latter primarily associated with changes in low-level moist static energy. Overall, the results indicate that CMIP5 climatological SST biases are the primary driver of the improper simulation of the annual cycle of East African rainfall. Some implications for climate change projections are discussed.
    • Download: (2.537Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Biases in CMIP5 Sea Surface Temperature and the Annual Cycle of East African Rainfall

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264317
    Collections
    • Journal of Climate

    Show full item record

    contributor authorLyon, Bradfield
    date accessioned2022-01-30T17:59:36Z
    date available2022-01-30T17:59:36Z
    date copyright8/21/2020 12:00:00 AM
    date issued2020
    identifier issn0894-8755
    identifier otherjclid200092.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264317
    description abstractIn much of East Africa, climatological rainfall follows a bimodal distribution characterized by the long rains (March–May) and short rains (October–December). Most CMIP5 coupled models fail to properly simulate this annual cycle, typically reversing the amplitudes of the short and long rains relative to observations. This study investigates how CMIP5 climatological sea surface temperature (SST) biases contribute to simulation errors in the annual cycle of East African rainfall. Monthly biases in CMIP5 climatological SSTs (50°S–50°N) are first identified in historical runs (1979–2005) from 31 models and examined for consistency. An atmospheric general circulation model (AGCM) is then forced with observed SSTs (1979–2005) generating a set of control runs and observed SSTs plus the monthly, multimodel mean SST biases generating a set of “bias” runs for the same period. The control runs generally capture the observed annual cycle of East African rainfall while the bias runs capture prominent CMIP5 annual cycle biases, including too little (much) precipitation during the long rains (short rains) and a 1-month lag in the peak of the long rains relative to observations. Diagnostics reveal the annual cycle biases are associated with seasonally varying north–south- and east–west-oriented SST bias patterns in Indian Ocean and regional-scale atmospheric circulation and stability changes, the latter primarily associated with changes in low-level moist static energy. Overall, the results indicate that CMIP5 climatological SST biases are the primary driver of the improper simulation of the annual cycle of East African rainfall. Some implications for climate change projections are discussed.
    publisherAmerican Meteorological Society
    titleBiases in CMIP5 Sea Surface Temperature and the Annual Cycle of East African Rainfall
    typeJournal Paper
    journal volume33
    journal issue19
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-20-0092.1
    journal fristpage8209
    journal lastpage8223
    treeJournal of Climate:;2020:;volume( 33 ):;issue: 019
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian