YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mesoscale Convective System Precipitation Characteristics over East Asia. Part I: Regional Differences and Seasonal Variations

    Source: Journal of Climate:;2020:;volume( 33 ):;issue: 021::page 9271
    Author:
    Li, Puxi;Moseley, Christopher;Prein, Andreas F.;Chen, Haoming;Li, Jian;Furtado, Kalli;Zhou, Tianjun
    DOI: 10.1175/JCLI-D-20-0072.1
    Publisher: American Meteorological Society
    Abstract: Mesoscale convective systems (MCSs) play an important role in modulating the global water cycle and energy balance and frequently generate high-impact weather events. The majority of existing literature studying MCS activity over East Asia is based on specific case studies and more climatological investigations revealing the precipitation characteristics of MCSs over eastern China are keenly needed. In this study, we use an iterative rain cell tracking method to identify and track MCS precipitation during 2008–16 to investigate regional differences and seasonal variations of MCS precipitation characteristics. Our results show that the middle-to-lower reaches of the Yangtze River basin (YRB-ML) receive the largest amount and exhibit the most pronounced seasonal cycle of MCS precipitation in eastern China. MCS precipitation over YRB-ML can exceed 2.6 mm day−1 in June, contributing over 30.0% of April–July total rainfall. Particularly long-lived MCSs occur over the eastern periphery of the Tibetan Plateau (ETP), with 25% of MCSs over the ETP persisting for more than 18 h in spring. In addition, spring MCSs feature larger rainfall areas, longer durations, and faster propagation speeds. Summer MCSs have a higher precipitation intensity and a more pronounced diurnal cycle except for southeastern China, where MCSs have similar precipitation intensity in spring and summer. There is less MCS precipitation in autumn, but an MCS precipitation center over the ETP still persists. MCSs reach peak hourly rainfall intensities during the time of maximum growth (a few hours after genesis), reach their maximum size around 5 h after genesis, and start decaying thereafter.
    • Download: (5.741Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mesoscale Convective System Precipitation Characteristics over East Asia. Part I: Regional Differences and Seasonal Variations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264307
    Collections
    • Journal of Climate

    Show full item record

    contributor authorLi, Puxi;Moseley, Christopher;Prein, Andreas F.;Chen, Haoming;Li, Jian;Furtado, Kalli;Zhou, Tianjun
    date accessioned2022-01-30T17:59:18Z
    date available2022-01-30T17:59:18Z
    date copyright9/28/2020 12:00:00 AM
    date issued2020
    identifier issn0894-8755
    identifier otherjclid200072.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264307
    description abstractMesoscale convective systems (MCSs) play an important role in modulating the global water cycle and energy balance and frequently generate high-impact weather events. The majority of existing literature studying MCS activity over East Asia is based on specific case studies and more climatological investigations revealing the precipitation characteristics of MCSs over eastern China are keenly needed. In this study, we use an iterative rain cell tracking method to identify and track MCS precipitation during 2008–16 to investigate regional differences and seasonal variations of MCS precipitation characteristics. Our results show that the middle-to-lower reaches of the Yangtze River basin (YRB-ML) receive the largest amount and exhibit the most pronounced seasonal cycle of MCS precipitation in eastern China. MCS precipitation over YRB-ML can exceed 2.6 mm day−1 in June, contributing over 30.0% of April–July total rainfall. Particularly long-lived MCSs occur over the eastern periphery of the Tibetan Plateau (ETP), with 25% of MCSs over the ETP persisting for more than 18 h in spring. In addition, spring MCSs feature larger rainfall areas, longer durations, and faster propagation speeds. Summer MCSs have a higher precipitation intensity and a more pronounced diurnal cycle except for southeastern China, where MCSs have similar precipitation intensity in spring and summer. There is less MCS precipitation in autumn, but an MCS precipitation center over the ETP still persists. MCSs reach peak hourly rainfall intensities during the time of maximum growth (a few hours after genesis), reach their maximum size around 5 h after genesis, and start decaying thereafter.
    publisherAmerican Meteorological Society
    titleMesoscale Convective System Precipitation Characteristics over East Asia. Part I: Regional Differences and Seasonal Variations
    typeJournal Paper
    journal volume33
    journal issue21
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-20-0072.1
    journal fristpage9271
    journal lastpage9286
    treeJournal of Climate:;2020:;volume( 33 ):;issue: 021
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian