Show simple item record

contributor authorRao, Suryachandra A.;Goswami, B. N.;Sahai, A. K.;Rajagopal, E. N.;Mukhopadhyay, P.;Rajeevan, M.;Nayak, S.;Rathore, L. S.;Shenoi, S. S. C.;Ramesh, K. J.;Nanjundiah, R. S.;Ravichandran, M.;Mitra, A. K.;Pai, D. S.;Bhowmik, S. K. R.;Hazra, A.;Mahapatra, S.;Saha, S. K.;Chaudhari, H. S.;Joseph, S.;Sreenivas, P.;Pokhrel, S.;Pillai, P. A.;Chattopadhyay, R.;Deshpande, M.;Krishna, R. P. M.;Das, Renu S.;Prasad, V. S.;Abhilash, S.;Panickal, S.;Krishnan, R.;Kumar, S.;Ramu, D. A.;Reddy, S. S.;Arora, A.;Goswami, T.;Rai, A.;Srivastava, A.;Pradhan, M.;Tirkey, S.;Ganai, M.;Mandal, R.;Dey, A.;Sarkar, S.;Malviya, S.;Dhakate, A.;Salunke, K.;Maini, Parvinder
date accessioned2022-01-30T17:58:18Z
date available2022-01-30T17:58:18Z
date copyright1/7/2020 12:00:00 AM
date issued2020
identifier issn0003-0007
identifier otherbams-d-17-0330_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264279
description abstractIn spite of the summer monsoon’s importance in determining the life and economy of an agriculture-dependent country like India, committed efforts toward improving its prediction and simulation have been limited. Hence, a focused mission mode program Monsoon Mission (MM) was founded in 2012 to spur progress in this direction. This article explains the efforts made by the Earth System Science Organization (ESSO), Ministry of Earth Sciences (MoES), Government of India, in implementing MM to develop a dynamical prediction framework to improve monsoon prediction. Climate Forecast System, version 2 (CFSv2), and the Met Office Unified Model (UM) were chosen as the base models. The efforts in this program have resulted in 1) unparalleled skill of 0.63 for seasonal prediction of the Indian monsoon (for the period 1981–2010) in a high-resolution (∼38 km) seasonal prediction system, relative to present-generation seasonal prediction models; 2) extended-range predictions by a CFS-based grand multimodel ensemble (MME) prediction system; and 3) a gain of 2-day lead time from very high-resolution (12.5 km) Global Forecast System (GFS)-based short-range predictions up to 10 days. These prediction skills are on par with other global leading weather and climate centers, and are better in some areas. Several developmental activities like coupled data assimilation, changes in convective parameterization, cloud microphysics schemes, and parameterization of land surface processes (including snow and sea ice) led to the improvements such as reducing the strong model biases in the Indian summer monsoon simulation and elsewhere in the tropics.
publisherAmerican Meteorological Society
titleMonsoon Mission: A Targeted Activity to Improve Monsoon Prediction across Scales
typeJournal Paper
journal volume100
journal issue12
journal titleBulletin of the American Meteorological Society
identifier doi10.1175/BAMS-D-17-0330.1
journal fristpage2509
journal lastpage2532
treeBulletin of the American Meteorological Society:;2020:;volume( 100 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record