Severe Cold Winter in North America Linked to Bering Sea Ice LossSource: Journal of Climate:;2020:;volume( 33 ):;issue: 018::page 8069DOI: 10.1175/JCLI-D-19-0994.1Publisher: American Meteorological Society
Abstract: North America experienced an intense cold wave with record low temperatures during the winter of 2017/18, at the time reaching the smallest rank of sea ice area (SIA) in the Bering Sea over the past four decades. Using observations, ocean reanalysis, and atmospheric reanalysis data for 39 winters (1979/80–2017/18), both the Bering SIA loss and cold winters in North America are linked robustly via sea level pressure variations over Alaska detected as a dominant mode, the Alaska Oscillation (ALO). The ALO differs from previously identified atmospheric teleconnection and climate patterns. In the positive ALO, the equatorward cold airflow through the Bering Strait increases, resulting in surface air cooling over the Bering Sea and an increase in Bering SIA, as well as surface warming (about 4 K for the winter mean) for North America in response to a decrease of equatorward cold airflow, and vice versa for negative phase. The northerly winds with the cold air over the Bering Sea result in substantial heat release from ocean to atmosphere over open water just south of the region covered by sea ice. Heating over the southern part of Bering Sea acts as a positive feedback for the positive ALO and its related large-scale atmospheric circulation in a linear baroclinic model experiment. Bering SIA shows no decreasing trend, but has remained small since 2015. CMIP6 climate models of the SSP5–8.5 scenario project a decrease of Bering SIA in the future climate. To explain severe cold winters in North America under global warming, it is necessary to get an understanding of climate systems with little or no sea ice.
|
Collections
Show full item record
contributor author | Iida, Mizuki;Sugimoto, Shusaku;Suga, Toshio | |
date accessioned | 2022-01-30T17:57:51Z | |
date available | 2022-01-30T17:57:51Z | |
date copyright | 8/20/2020 12:00:00 AM | |
date issued | 2020 | |
identifier issn | 0894-8755 | |
identifier other | jclid190994.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4264266 | |
description abstract | North America experienced an intense cold wave with record low temperatures during the winter of 2017/18, at the time reaching the smallest rank of sea ice area (SIA) in the Bering Sea over the past four decades. Using observations, ocean reanalysis, and atmospheric reanalysis data for 39 winters (1979/80–2017/18), both the Bering SIA loss and cold winters in North America are linked robustly via sea level pressure variations over Alaska detected as a dominant mode, the Alaska Oscillation (ALO). The ALO differs from previously identified atmospheric teleconnection and climate patterns. In the positive ALO, the equatorward cold airflow through the Bering Strait increases, resulting in surface air cooling over the Bering Sea and an increase in Bering SIA, as well as surface warming (about 4 K for the winter mean) for North America in response to a decrease of equatorward cold airflow, and vice versa for negative phase. The northerly winds with the cold air over the Bering Sea result in substantial heat release from ocean to atmosphere over open water just south of the region covered by sea ice. Heating over the southern part of Bering Sea acts as a positive feedback for the positive ALO and its related large-scale atmospheric circulation in a linear baroclinic model experiment. Bering SIA shows no decreasing trend, but has remained small since 2015. CMIP6 climate models of the SSP5–8.5 scenario project a decrease of Bering SIA in the future climate. To explain severe cold winters in North America under global warming, it is necessary to get an understanding of climate systems with little or no sea ice. | |
publisher | American Meteorological Society | |
title | Severe Cold Winter in North America Linked to Bering Sea Ice Loss | |
type | Journal Paper | |
journal volume | 33 | |
journal issue | 18 | |
journal title | Journal of Climate | |
identifier doi | 10.1175/JCLI-D-19-0994.1 | |
journal fristpage | 8069 | |
journal lastpage | 8085 | |
tree | Journal of Climate:;2020:;volume( 33 ):;issue: 018 | |
contenttype | Fulltext |