YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Understanding Future Change of Global Monsoons Projected by CMIP6 Models

    Source: Journal of Climate:;2020:;volume( 33 ):;issue: 015::page 6471
    Author:
    Wang, Bin;Jin, Chunhan;Liu, Jian
    DOI: 10.1175/JCLI-D-19-0993.1
    Publisher: American Meteorological Society
    Abstract: Projecting future change of monsoon rainfall is essential for water resource management, food security, disaster mitigation, and infrastructure planning. Here we assess the future change and explore the causes of the changes using 15 models that participated in phase 6 of the Coupled Model Intercomparison Project (CMIP6). The multimodel ensemble projects that, under the shared socioeconomic pathway (SSP) 2–4.5, the total land monsoon rainfall will likely increase in the Northern Hemisphere (NH) by about 2.8% per one degree Celsius of global warming (2.8% °C−1) in contrast to little change in the Southern Hemisphere (SH; −0.3% °C−1). In addition, in the future the Asian–northern African monsoon likely becomes wetter while the North American monsoon becomes drier. Since the humidity increase is nearly uniform in all summer monsoon regions, the dynamic processes must play a fundamental role in shaping the spatial patterns of the global monsoon changes. Greenhouse gas (GHG) radiative forcing induces a “NH-warmer-than-SH” pattern, which favors increasing the NH monsoon rainfall and prolonging the NH monsoon rainy season while reducing the SH monsoon rainfall and shortening the SH monsoon rainy season. The GHG forcing induces a “land-warmer-than-ocean” pattern, which enhances Asian monsoon low pressure and increases Asian and northern African monsoon rainfall, and an El Niño–like warming, which reduces North American monsoon rainfall. The uncertainties in the projected monsoon precipitation changes are significantly related to the models’ projected hemispheric and land–ocean thermal contrasts as well as to the eastern Pacific Ocean warming. The CMIP6 models’ common biases and the processes by which convective heating drives monsoon circulation are also discussed.
    • Download: (6.336Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Understanding Future Change of Global Monsoons Projected by CMIP6 Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264265
    Collections
    • Journal of Climate

    Show full item record

    contributor authorWang, Bin;Jin, Chunhan;Liu, Jian
    date accessioned2022-01-30T17:57:47Z
    date available2022-01-30T17:57:47Z
    date copyright6/22/2020 12:00:00 AM
    date issued2020
    identifier issn0894-8755
    identifier otherjclid190993.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264265
    description abstractProjecting future change of monsoon rainfall is essential for water resource management, food security, disaster mitigation, and infrastructure planning. Here we assess the future change and explore the causes of the changes using 15 models that participated in phase 6 of the Coupled Model Intercomparison Project (CMIP6). The multimodel ensemble projects that, under the shared socioeconomic pathway (SSP) 2–4.5, the total land monsoon rainfall will likely increase in the Northern Hemisphere (NH) by about 2.8% per one degree Celsius of global warming (2.8% °C−1) in contrast to little change in the Southern Hemisphere (SH; −0.3% °C−1). In addition, in the future the Asian–northern African monsoon likely becomes wetter while the North American monsoon becomes drier. Since the humidity increase is nearly uniform in all summer monsoon regions, the dynamic processes must play a fundamental role in shaping the spatial patterns of the global monsoon changes. Greenhouse gas (GHG) radiative forcing induces a “NH-warmer-than-SH” pattern, which favors increasing the NH monsoon rainfall and prolonging the NH monsoon rainy season while reducing the SH monsoon rainfall and shortening the SH monsoon rainy season. The GHG forcing induces a “land-warmer-than-ocean” pattern, which enhances Asian monsoon low pressure and increases Asian and northern African monsoon rainfall, and an El Niño–like warming, which reduces North American monsoon rainfall. The uncertainties in the projected monsoon precipitation changes are significantly related to the models’ projected hemispheric and land–ocean thermal contrasts as well as to the eastern Pacific Ocean warming. The CMIP6 models’ common biases and the processes by which convective heating drives monsoon circulation are also discussed.
    publisherAmerican Meteorological Society
    titleUnderstanding Future Change of Global Monsoons Projected by CMIP6 Models
    typeJournal Paper
    journal volume33
    journal issue15
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-19-0993.1
    journal fristpage6471
    journal lastpage6489
    treeJournal of Climate:;2020:;volume( 33 ):;issue: 015
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian