YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    What Kinds of Atmospheric Anomalies Drive Wintertime North Pacific Basin-Scale Subtropical Oceanic Front Intensity Variation?

    Source: Journal of Climate:;2020:;volume( 33 ):;issue: 016::page 7011
    Author:
    Zhang, Ran;Fang, Jiabei;Yang, Xiu-Qun
    DOI: 10.1175/JCLI-D-19-0973.1
    Publisher: American Meteorological Society
    Abstract: The basin-scale subtropical oceanic front zone (STFZ) is a key region for midlatitude air–sea interaction in the North Pacific. However, previous studies considered midlatitude sea surface temperature (SST) variabilities as a response to atmospheric stochastic forcing. With reanalysis and observational data, this study investigates what kinds of atmospheric anomalies drive the wintertime North Pacific STFZ intensity variation. Lead correlations show that prior to the STFZ’s enhancement, there exist persistent atmospheric anomalies characterized by a negative-phase Arctic Oscillation (AO) and a positive-phase Pacific–North American (PNA) pattern, lasting for up to 80 and 50 days and peaking at 20- and 8-day leads, respectively. It is further found that the long-lasting negative-phase AO is conducive to stronger low-tropospheric baroclinicity at around 40°N over North Pacific where there is a climatological baroclinic region. The stronger baroclinicity leads to more synoptic transient eddy activities, promoting an equivalent barotropic low geopotential height anomaly north of STFZ via transient eddy vorticity forcing. The geopotential height anomaly propagates downstream, triggering a PNA-like pattern. With such an AO-promoted atmospheric internal wave–flow feedback, the regional PNA pattern is intensified and embedded in the annular AO mode, accompanied with an intensified Aleutian low and surface westerly wind that peak at an 8-day lead, preconditioning a persistent (nonstochastic) atmospheric forcing on the STFZ. The intensified surface westerly predominantly tends to drive a southward Ekman transport and increase upward surface turbulent heat fluxes into the atmosphere through increasing surface wind speed and sea–air temperature difference, amplifying the underlying negative SST anomaly and cross-frontal meridional SST gradient, ultimately intensifying the STFZ.
    • Download: (8.636Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      What Kinds of Atmospheric Anomalies Drive Wintertime North Pacific Basin-Scale Subtropical Oceanic Front Intensity Variation?

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264254
    Collections
    • Journal of Climate

    Show full item record

    contributor authorZhang, Ran;Fang, Jiabei;Yang, Xiu-Qun
    date accessioned2022-01-30T17:57:29Z
    date available2022-01-30T17:57:29Z
    date copyright7/14/2020 12:00:00 AM
    date issued2020
    identifier issn0894-8755
    identifier otherjclid190973.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264254
    description abstractThe basin-scale subtropical oceanic front zone (STFZ) is a key region for midlatitude air–sea interaction in the North Pacific. However, previous studies considered midlatitude sea surface temperature (SST) variabilities as a response to atmospheric stochastic forcing. With reanalysis and observational data, this study investigates what kinds of atmospheric anomalies drive the wintertime North Pacific STFZ intensity variation. Lead correlations show that prior to the STFZ’s enhancement, there exist persistent atmospheric anomalies characterized by a negative-phase Arctic Oscillation (AO) and a positive-phase Pacific–North American (PNA) pattern, lasting for up to 80 and 50 days and peaking at 20- and 8-day leads, respectively. It is further found that the long-lasting negative-phase AO is conducive to stronger low-tropospheric baroclinicity at around 40°N over North Pacific where there is a climatological baroclinic region. The stronger baroclinicity leads to more synoptic transient eddy activities, promoting an equivalent barotropic low geopotential height anomaly north of STFZ via transient eddy vorticity forcing. The geopotential height anomaly propagates downstream, triggering a PNA-like pattern. With such an AO-promoted atmospheric internal wave–flow feedback, the regional PNA pattern is intensified and embedded in the annular AO mode, accompanied with an intensified Aleutian low and surface westerly wind that peak at an 8-day lead, preconditioning a persistent (nonstochastic) atmospheric forcing on the STFZ. The intensified surface westerly predominantly tends to drive a southward Ekman transport and increase upward surface turbulent heat fluxes into the atmosphere through increasing surface wind speed and sea–air temperature difference, amplifying the underlying negative SST anomaly and cross-frontal meridional SST gradient, ultimately intensifying the STFZ.
    publisherAmerican Meteorological Society
    titleWhat Kinds of Atmospheric Anomalies Drive Wintertime North Pacific Basin-Scale Subtropical Oceanic Front Intensity Variation?
    typeJournal Paper
    journal volume33
    journal issue16
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-19-0973.1
    journal fristpage7011
    journal lastpage7026
    treeJournal of Climate:;2020:;volume( 33 ):;issue: 016
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian