YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Atlantic–Pacific Links in Observed Multidecadal SST Variability: Is the Atlantic Multidecadal Oscillation’s Phase Reversal Orchestrated by the Pacific Decadal Oscillation?

    Source: Journal of Climate:;2020:;volume( 33 ):;issue: 013::page 5479
    Author:
    Nigam, Sumant;Sengupta, Agniv;Ruiz-Barradas, Alfredo
    DOI: 10.1175/JCLI-D-19-0880.1
    Publisher: American Meteorological Society
    Abstract: The Atlantic and Pacific basin are found linked in the context of multidecadal SST variability from analyses of 118 years of observational data. Recurrent spatiotemporal variability, including multidecadal modes, was identified using the extended-EOF technique in a longitudinally global domain, allowing unfettered expression of interbasin interactions. The physicality of the obtained decadal modes was assessed using fishery records and analog counts.A three-mode structure with bi-directional interbasin links frames the new perspective on the cycling of multidecadal SST variability. The three modes are the Atlantic multidecadal oscillation (AMO), low-frequency North Atlantic Oscillation (LF-NAO), and North Pacific decadal variability [PDV-NP; resembling negative (–ve) PDO]. The two previously documented links AMO→PDV-NP (with ~12.5-yr lead) and LF-NAO→AMO (with 16-yr lead) are corroborated, while a third one, PDV-NP→(−LF-NAO) with ~6.5-yr lead, is uncovered. The interaction triad closes the loop on the cycling of multidecadal SST variability, generating AMO’s phase reversal in ~35 years, consistent with its widely noted ~70-yr time scale. The two previously noted links—one intrabasin and one interbasin—were unsuccessful in this regard.Other findings include the deeper subsurface extensions of Atlantic multidecadal SST variability, and the hitherto unrecognized similarity of Pan-Pacific decadal variability and North Pacific Gyre Oscillation. Instrumental records, albeit short in the context of multidecadal variability, must continue to be mined for insights into the functioning of the climate system as its model representations while improving, remain inadequate.
    • Download: (5.685Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Atlantic–Pacific Links in Observed Multidecadal SST Variability: Is the Atlantic Multidecadal Oscillation’s Phase Reversal Orchestrated by the Pacific Decadal Oscillation?

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264215
    Collections
    • Journal of Climate

    Show full item record

    contributor authorNigam, Sumant;Sengupta, Agniv;Ruiz-Barradas, Alfredo
    date accessioned2022-01-30T17:56:03Z
    date available2022-01-30T17:56:03Z
    date copyright6/1/2020 12:00:00 AM
    date issued2020
    identifier issn0894-8755
    identifier otherjclid190880.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264215
    description abstractThe Atlantic and Pacific basin are found linked in the context of multidecadal SST variability from analyses of 118 years of observational data. Recurrent spatiotemporal variability, including multidecadal modes, was identified using the extended-EOF technique in a longitudinally global domain, allowing unfettered expression of interbasin interactions. The physicality of the obtained decadal modes was assessed using fishery records and analog counts.A three-mode structure with bi-directional interbasin links frames the new perspective on the cycling of multidecadal SST variability. The three modes are the Atlantic multidecadal oscillation (AMO), low-frequency North Atlantic Oscillation (LF-NAO), and North Pacific decadal variability [PDV-NP; resembling negative (–ve) PDO]. The two previously documented links AMO→PDV-NP (with ~12.5-yr lead) and LF-NAO→AMO (with 16-yr lead) are corroborated, while a third one, PDV-NP→(−LF-NAO) with ~6.5-yr lead, is uncovered. The interaction triad closes the loop on the cycling of multidecadal SST variability, generating AMO’s phase reversal in ~35 years, consistent with its widely noted ~70-yr time scale. The two previously noted links—one intrabasin and one interbasin—were unsuccessful in this regard.Other findings include the deeper subsurface extensions of Atlantic multidecadal SST variability, and the hitherto unrecognized similarity of Pan-Pacific decadal variability and North Pacific Gyre Oscillation. Instrumental records, albeit short in the context of multidecadal variability, must continue to be mined for insights into the functioning of the climate system as its model representations while improving, remain inadequate.
    publisherAmerican Meteorological Society
    titleAtlantic–Pacific Links in Observed Multidecadal SST Variability: Is the Atlantic Multidecadal Oscillation’s Phase Reversal Orchestrated by the Pacific Decadal Oscillation?
    typeJournal Paper
    journal volume33
    journal issue13
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-19-0880.1
    journal fristpage5479
    journal lastpage5505
    treeJournal of Climate:;2020:;volume( 33 ):;issue: 013
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian