YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vertical Structure of the Upper–Indian Ocean Thermal Variability

    Source: Journal of Climate:;2020:;volume( 33 ):;issue: 017::page 7233
    Author:
    Li, Yuanlong;Han, Weiqing;Wang, Fan;Zhang, Lei;Duan, Jing
    DOI: 10.1175/JCLI-D-19-0851.1
    Publisher: American Meteorological Society
    Abstract: Multi-time-scale variabilities of the Indian Ocean (IO) temperature over 0–700 m are revisited from the perspective of vertical structure. Analysis of historical data for 1955–2018 identifies two dominant types of vertical structures that account for respectively 70.5% and 21.2% of the total variance on interannual-to-interdecadal time scales with the linear trend and seasonal cycle removed. The leading type manifests as vertically coherent warming/cooling with the maximal amplitude at ~100 m and exhibits evident interdecadal variations. The second type shows a vertical dipole structure between the surface (0–60 m) and subsurface (60–400 m) layers and interannual-to-decadal fluctuations. Ocean model experiments were performed to gain insights into underlying processes. The vertically coherent, basinwide warming/cooling of the IO on an interdecadal time scale is caused by changes of the Indonesian Throughflow (ITF) controlled by Pacific climate and anomalous surface heat fluxes partly originating from external forcing. Enhanced changes in the subtropical southern IO arise from positive air–sea feedback among sea surface temperature, winds, turbulent heat flux, cloud cover, and shortwave radiation. Regarding dipole-type variability, the basinwide surface warming is induced by surface heat flux forcing, and the subsurface cooling occurs only in the eastern IO. The cooling in the southeast IO is generated by the weakened ITF, whereas that in the northeast IO is caused by equatorial easterly winds through upwelling oceanic waves. Both El Niño–Southern Oscillation (ENSO) and IO dipole (IOD) events are favorable for the generation of such vertical dipole anomalies.
    • Download: (4.176Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vertical Structure of the Upper–Indian Ocean Thermal Variability

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264205
    Collections
    • Journal of Climate

    Show full item record

    contributor authorLi, Yuanlong;Han, Weiqing;Wang, Fan;Zhang, Lei;Duan, Jing
    date accessioned2022-01-30T17:55:44Z
    date available2022-01-30T17:55:44Z
    date copyright7/22/2020 12:00:00 AM
    date issued2020
    identifier issn0894-8755
    identifier otherjclid190851.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264205
    description abstractMulti-time-scale variabilities of the Indian Ocean (IO) temperature over 0–700 m are revisited from the perspective of vertical structure. Analysis of historical data for 1955–2018 identifies two dominant types of vertical structures that account for respectively 70.5% and 21.2% of the total variance on interannual-to-interdecadal time scales with the linear trend and seasonal cycle removed. The leading type manifests as vertically coherent warming/cooling with the maximal amplitude at ~100 m and exhibits evident interdecadal variations. The second type shows a vertical dipole structure between the surface (0–60 m) and subsurface (60–400 m) layers and interannual-to-decadal fluctuations. Ocean model experiments were performed to gain insights into underlying processes. The vertically coherent, basinwide warming/cooling of the IO on an interdecadal time scale is caused by changes of the Indonesian Throughflow (ITF) controlled by Pacific climate and anomalous surface heat fluxes partly originating from external forcing. Enhanced changes in the subtropical southern IO arise from positive air–sea feedback among sea surface temperature, winds, turbulent heat flux, cloud cover, and shortwave radiation. Regarding dipole-type variability, the basinwide surface warming is induced by surface heat flux forcing, and the subsurface cooling occurs only in the eastern IO. The cooling in the southeast IO is generated by the weakened ITF, whereas that in the northeast IO is caused by equatorial easterly winds through upwelling oceanic waves. Both El Niño–Southern Oscillation (ENSO) and IO dipole (IOD) events are favorable for the generation of such vertical dipole anomalies.
    publisherAmerican Meteorological Society
    titleVertical Structure of the Upper–Indian Ocean Thermal Variability
    typeJournal Paper
    journal volume33
    journal issue17
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-19-0851.1
    journal fristpage7233
    journal lastpage7253
    treeJournal of Climate:;2020:;volume( 33 ):;issue: 017
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian