YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Linkage between Projected Precipitation and Atmospheric Thermodynamic Changes

    Source: Journal of Climate:;2020:;volume( 33 ):;issue: 016::page 7155
    Author:
    Chen, Jiao;Dai, Aiguo;Zhang, Yaocun
    DOI: 10.1175/JCLI-D-19-0785.1
    Publisher: American Meteorological Society
    Abstract: Light–moderate precipitation is projected to decrease whereas heavy precipitation may increase under greenhouse gas (GHG)-induced global warming, while atmospheric convective available potential energy (CAPE) over most of the globe and convective inhibition (CIN) over land are projected to increase. The underlying processes for these precipitation changes are not fully understood. Here, projected precipitation changes are analyzed using 3-hourly data from simulations by a fully coupled climate model, and their link to the CAPE and CIN changes is examined. The model approximately captures the spatial patterns in the mean precipitation frequencies and the significant correlation between the precipitation frequencies or intensity and CAPE over most of the globe or CIN over tropical oceans seen in reanalysis, and it projects decreased light–moderate precipitation (0.01 < P ≤ 1 mm h−1) but increased heavy precipitation (P > 1 mm h−1) in a warmer climate. Results show that most of the light–moderate precipitation events occur under low-CAPE and/or low-CIN conditions, which are projected to decrease greatly in a warmer climate as increased temperature and humidity shift many of such cases into moderate–high CAPE or CIN cases. This results in large decreases in the light–moderate precipitation events. In contrast, increases in heavy precipitation result primarily from its increased probability under given CAPE and CIN, with a secondary contribution from the CAPE/CIN frequency changes. The increased probability for heavy precipitation partly results from a shift of the precipitation histogram toward higher intensity that could result from a uniform percentage increase in precipitation intensity due to increased water vapor in a warmer climate.
    • Download: (7.732Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Linkage between Projected Precipitation and Atmospheric Thermodynamic Changes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264191
    Collections
    • Journal of Climate

    Show full item record

    contributor authorChen, Jiao;Dai, Aiguo;Zhang, Yaocun
    date accessioned2022-01-30T17:55:11Z
    date available2022-01-30T17:55:11Z
    date copyright7/20/2020 12:00:00 AM
    date issued2020
    identifier issn0894-8755
    identifier otherjclid190785.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264191
    description abstractLight–moderate precipitation is projected to decrease whereas heavy precipitation may increase under greenhouse gas (GHG)-induced global warming, while atmospheric convective available potential energy (CAPE) over most of the globe and convective inhibition (CIN) over land are projected to increase. The underlying processes for these precipitation changes are not fully understood. Here, projected precipitation changes are analyzed using 3-hourly data from simulations by a fully coupled climate model, and their link to the CAPE and CIN changes is examined. The model approximately captures the spatial patterns in the mean precipitation frequencies and the significant correlation between the precipitation frequencies or intensity and CAPE over most of the globe or CIN over tropical oceans seen in reanalysis, and it projects decreased light–moderate precipitation (0.01 < P ≤ 1 mm h−1) but increased heavy precipitation (P > 1 mm h−1) in a warmer climate. Results show that most of the light–moderate precipitation events occur under low-CAPE and/or low-CIN conditions, which are projected to decrease greatly in a warmer climate as increased temperature and humidity shift many of such cases into moderate–high CAPE or CIN cases. This results in large decreases in the light–moderate precipitation events. In contrast, increases in heavy precipitation result primarily from its increased probability under given CAPE and CIN, with a secondary contribution from the CAPE/CIN frequency changes. The increased probability for heavy precipitation partly results from a shift of the precipitation histogram toward higher intensity that could result from a uniform percentage increase in precipitation intensity due to increased water vapor in a warmer climate.
    publisherAmerican Meteorological Society
    titleLinkage between Projected Precipitation and Atmospheric Thermodynamic Changes
    typeJournal Paper
    journal volume33
    journal issue16
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-19-0785.1
    journal fristpage7155
    journal lastpage7178
    treeJournal of Climate:;2020:;volume( 33 ):;issue: 016
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian