YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Impact of Anthropogenic Forcing and Natural Processes on Past, Present, and Future Rainfall over Victoria, Australia

    Source: Journal of Climate:;2020:;volume( 33 ):;issue: 018::page 8087
    Author:
    Rauniyar, Surendra P.;Power, Scott B.
    DOI: 10.1175/JCLI-D-19-0759.1
    Publisher: American Meteorological Society
    Abstract: Cool-season (April to October) rainfall dominates the annual average rainfall over Victoria, Australia, and is important for agriculture and replenishing reservoirs. Rainfall during the cool season has been unusually low since the beginning of the Millennium Drought in 1997 (~12% below the twentieth-century average). In this study, 24 CMIP5 climate models are used to estimate 1) the extent to which this drying is driven by external forcing and 2) future rainfall, taking both external forcing and internal natural climate variability into account. All models have preindustrial, historical, and twenty-first-century (RCP2.6, RCP4.5, and RCP8.5) simulations. It is found that rainfall in the past two decades is below the preindustrial average in two-thirds or more of model simulations. However, the magnitude of the multimodel median externally forced drying is equivalent to only 20% of the observed drying (interquartile range of 40% to −4%), suggesting that the drying is dominated by internally generated rainfall variability. Underestimation of internal variability of rainfall by the models, however, increases the uncertainties in these estimates. According to models the anthropogenically forced drying becomes dominant from 2010 to 2029, when drying is evident in over 90% of the model simulations. For the 2018–37 period, it is found that there is only a ~12% chance that internal rainfall variability could completely offset the anthropogenically forced drying. By the late twenty-first century, the anthropogenically forced drying under RCP8.5 is so large that internal variability appears too small to be able to offset it. Confidence in the projections is lowered because models have difficulty in simulating the magnitude of the observed decline in rainfall.
    • Download: (2.456Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Impact of Anthropogenic Forcing and Natural Processes on Past, Present, and Future Rainfall over Victoria, Australia

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264184
    Collections
    • Journal of Climate

    Show full item record

    contributor authorRauniyar, Surendra P.;Power, Scott B.
    date accessioned2022-01-30T17:55:00Z
    date available2022-01-30T17:55:00Z
    date copyright8/20/2020 12:00:00 AM
    date issued2020
    identifier issn0894-8755
    identifier otherjclid190759.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264184
    description abstractCool-season (April to October) rainfall dominates the annual average rainfall over Victoria, Australia, and is important for agriculture and replenishing reservoirs. Rainfall during the cool season has been unusually low since the beginning of the Millennium Drought in 1997 (~12% below the twentieth-century average). In this study, 24 CMIP5 climate models are used to estimate 1) the extent to which this drying is driven by external forcing and 2) future rainfall, taking both external forcing and internal natural climate variability into account. All models have preindustrial, historical, and twenty-first-century (RCP2.6, RCP4.5, and RCP8.5) simulations. It is found that rainfall in the past two decades is below the preindustrial average in two-thirds or more of model simulations. However, the magnitude of the multimodel median externally forced drying is equivalent to only 20% of the observed drying (interquartile range of 40% to −4%), suggesting that the drying is dominated by internally generated rainfall variability. Underestimation of internal variability of rainfall by the models, however, increases the uncertainties in these estimates. According to models the anthropogenically forced drying becomes dominant from 2010 to 2029, when drying is evident in over 90% of the model simulations. For the 2018–37 period, it is found that there is only a ~12% chance that internal rainfall variability could completely offset the anthropogenically forced drying. By the late twenty-first century, the anthropogenically forced drying under RCP8.5 is so large that internal variability appears too small to be able to offset it. Confidence in the projections is lowered because models have difficulty in simulating the magnitude of the observed decline in rainfall.
    publisherAmerican Meteorological Society
    titleThe Impact of Anthropogenic Forcing and Natural Processes on Past, Present, and Future Rainfall over Victoria, Australia
    typeJournal Paper
    journal volume33
    journal issue18
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-19-0759.1
    journal fristpage8087
    journal lastpage8106
    treeJournal of Climate:;2020:;volume( 33 ):;issue: 018
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian