YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Long-Term Trend of Upper-Air Temperature in China Derived from Microwave Sounding Data and Its Comparison with Radiosonde Observations

    Source: Journal of Climate:;2020:;volume( 33 ):;issue: 018::page 7875
    Author:
    Guo, Yanjun;Weng, Fuzhong;Wang, Guofu;Xu, Wenhui
    DOI: 10.1175/JCLI-D-19-0742.1
    Publisher: American Meteorological Society
    Abstract: Currently, the satellite Microwave Sounding Unit (MSU/AMSU) datasets developed from three organizations—Remote Sensing Systems (RSS), the University of Alabama at Huntsville (UAH), and the NOAA Center for Satellite Applications and Research (STAR)—are often used to monitor the global long-term trends of temperatures in the lower troposphere (TLT), midtroposphere (TMT), total troposphere (TTT), troposphere and stratosphere (TTS), and lower stratosphere (TLS). However, the trend in these temperatures over China has not been quantitatively assessed. In this study, the decadal variability and long-term trend of upper-air temperature during 1979–2018 from three MSU datasets are first evaluated over China and compared with the proxy MSU dataset simulated from homogenized surface and radiosonde profiles (EQU) at 113 stations in China. The regional mean MSU trends over China during 1979–2018 are 0.22–0.27 (TLT), 0.15–0.22 (TMT), 0.20–0.27 (TTT), 0.02–0.14 (TTS), and from −0.33 to −0.36 (TLS) K decade−1, whereas the EQU trends are 0.31 (TLT), 0.19 (TMT), 0.24 (TTT), 0.07 (TTS), and −0.26 (TLS) K decade−1. The trends from RSS generally show a better agreement with those from EQU. The trends from both MSU and EQU exhibit seasonal and regional difference with a larger warming in TLT in February and March, and stronger cooling in TLS from late winter to spring. The TLT and TMT over the Tibetan Plateau and northwestern China show larger warming trends. The variability from MSU and EQU agree well except TLT in Tibet and southern China. The major difference in regional mean temperatures over China between MSU and EQU is related primarily to the satellite instrument changes during 1979–98 and the radiosonde system changes in China in the 2000s.
    • Download: (4.619Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Long-Term Trend of Upper-Air Temperature in China Derived from Microwave Sounding Data and Its Comparison with Radiosonde Observations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264175
    Collections
    • Journal of Climate

    Show full item record

    contributor authorGuo, Yanjun;Weng, Fuzhong;Wang, Guofu;Xu, Wenhui
    date accessioned2022-01-30T17:54:42Z
    date available2022-01-30T17:54:42Z
    date copyright8/13/2020 12:00:00 AM
    date issued2020
    identifier issn0894-8755
    identifier otherjclid190742.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264175
    description abstractCurrently, the satellite Microwave Sounding Unit (MSU/AMSU) datasets developed from three organizations—Remote Sensing Systems (RSS), the University of Alabama at Huntsville (UAH), and the NOAA Center for Satellite Applications and Research (STAR)—are often used to monitor the global long-term trends of temperatures in the lower troposphere (TLT), midtroposphere (TMT), total troposphere (TTT), troposphere and stratosphere (TTS), and lower stratosphere (TLS). However, the trend in these temperatures over China has not been quantitatively assessed. In this study, the decadal variability and long-term trend of upper-air temperature during 1979–2018 from three MSU datasets are first evaluated over China and compared with the proxy MSU dataset simulated from homogenized surface and radiosonde profiles (EQU) at 113 stations in China. The regional mean MSU trends over China during 1979–2018 are 0.22–0.27 (TLT), 0.15–0.22 (TMT), 0.20–0.27 (TTT), 0.02–0.14 (TTS), and from −0.33 to −0.36 (TLS) K decade−1, whereas the EQU trends are 0.31 (TLT), 0.19 (TMT), 0.24 (TTT), 0.07 (TTS), and −0.26 (TLS) K decade−1. The trends from RSS generally show a better agreement with those from EQU. The trends from both MSU and EQU exhibit seasonal and regional difference with a larger warming in TLT in February and March, and stronger cooling in TLS from late winter to spring. The TLT and TMT over the Tibetan Plateau and northwestern China show larger warming trends. The variability from MSU and EQU agree well except TLT in Tibet and southern China. The major difference in regional mean temperatures over China between MSU and EQU is related primarily to the satellite instrument changes during 1979–98 and the radiosonde system changes in China in the 2000s.
    publisherAmerican Meteorological Society
    titleThe Long-Term Trend of Upper-Air Temperature in China Derived from Microwave Sounding Data and Its Comparison with Radiosonde Observations
    typeJournal Paper
    journal volume33
    journal issue18
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-19-0742.1
    journal fristpage7875
    journal lastpage7895
    treeJournal of Climate:;2020:;volume( 33 ):;issue: 018
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian