YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Assessment of MJO Circulation Influence on Air–Sea Interactions for Improved Seasonal Rainfall Predictions over East Africa

    Source: Journal of Climate:;2020:;volume( 33 ):;issue: 019::page 8367
    Author:
    Kimani, Margaret;Hoedjes, Joost C. B.;Su, Zhongbo
    DOI: 10.1175/JCLI-D-19-0296.1
    Publisher: American Meteorological Society
    Abstract: Rainfall variability affects agriculture planning and water resource management. In extreme flood and drought events, lives and property are destroyed. This study aims to improve East Africa’s seasonal rainfall prediction by determining the impact of the standard eight Real-time Multivariate Madden–Julian Oscillation (MJO) (RMM) phases on rainfall and using sea surface temperature (SST) response to test the predictability of the March–May (MAM) and October–December (OND) main rainfall seasons over a period of 33 years (1981–2013). Pearson correlation patterns, composite maps, and regression analyses were applied, and the Brier skill score (BSS) and correlation coefficients (CC) were utilized as validation metrics. Low correspondence of rainfall to MJO 1 and MJO 2 was observed except for the months of November and December. Seasonally, MAM and OND correlation patterns with MJO 2 revealed enhanced rainfall over the highlands and insignificant correspondence over coastal areas. Conversely, enhanced MJO 8 corresponded to suppressed rainfall during the June–August season over the coast and the eastern highlands. MAM rainfall was shown to be predictable using Maritime Continent SST indices, with a BSS of 0.41, while OND rainfall was shown to be predictable using Atlantic and Maritime Continent SSTs with a BSS of 0.62. Positive and negative MJO 2 corresponded, respectively, to enhanced and suppressed rainfall during the OND season and was confirmed to be related to, respectively, a positive and negative Indian Ocean dipole (IOD). An IOD year could possibly be triggered by changes in MJO 2 amplitudes observed as early peaks between February and June.
    • Download: (2.238Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Assessment of MJO Circulation Influence on Air–Sea Interactions for Improved Seasonal Rainfall Predictions over East Africa

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264125
    Collections
    • Journal of Climate

    Show full item record

    contributor authorKimani, Margaret;Hoedjes, Joost C. B.;Su, Zhongbo
    date accessioned2022-01-30T17:53:10Z
    date available2022-01-30T17:53:10Z
    date copyright8/27/2020 12:00:00 AM
    date issued2020
    identifier issn0894-8755
    identifier otherjclid190296.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264125
    description abstractRainfall variability affects agriculture planning and water resource management. In extreme flood and drought events, lives and property are destroyed. This study aims to improve East Africa’s seasonal rainfall prediction by determining the impact of the standard eight Real-time Multivariate Madden–Julian Oscillation (MJO) (RMM) phases on rainfall and using sea surface temperature (SST) response to test the predictability of the March–May (MAM) and October–December (OND) main rainfall seasons over a period of 33 years (1981–2013). Pearson correlation patterns, composite maps, and regression analyses were applied, and the Brier skill score (BSS) and correlation coefficients (CC) were utilized as validation metrics. Low correspondence of rainfall to MJO 1 and MJO 2 was observed except for the months of November and December. Seasonally, MAM and OND correlation patterns with MJO 2 revealed enhanced rainfall over the highlands and insignificant correspondence over coastal areas. Conversely, enhanced MJO 8 corresponded to suppressed rainfall during the June–August season over the coast and the eastern highlands. MAM rainfall was shown to be predictable using Maritime Continent SST indices, with a BSS of 0.41, while OND rainfall was shown to be predictable using Atlantic and Maritime Continent SSTs with a BSS of 0.62. Positive and negative MJO 2 corresponded, respectively, to enhanced and suppressed rainfall during the OND season and was confirmed to be related to, respectively, a positive and negative Indian Ocean dipole (IOD). An IOD year could possibly be triggered by changes in MJO 2 amplitudes observed as early peaks between February and June.
    publisherAmerican Meteorological Society
    titleAn Assessment of MJO Circulation Influence on Air–Sea Interactions for Improved Seasonal Rainfall Predictions over East Africa
    typeJournal Paper
    journal volume33
    journal issue19
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-19-0296.1
    journal fristpage8367
    journal lastpage8379
    treeJournal of Climate:;2020:;volume( 33 ):;issue: 019
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian