YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Diffusive–Nondiffusive Flux Decompositions in Atmospheric Boundary Layers

    Source: Journal of the Atmospheric Sciences:;2020:;volume( 77 ):;issue: 010::page 3479
    Author:
    Chor, Tomas;McWilliams, James C.;Chamecki, Marcelo
    DOI: 10.1175/JAS-D-20-0093.1
    Publisher: American Meteorological Society
    Abstract: Eddy diffusivity models are a common method to parameterize turbulent fluxes in the atmospheric sciences community. However, their inability to handle convective boundary layers leads to the addition of a nondiffusive flux component (usually called nonlocal) alongside the original diffusive term (usually called local). Both components are often modeled for convective conditions based on the shape of the eddy diffusivity profile for neutral conditions. This assumption of shape is traditionally employed due to the difficulty of estimating both components based on numerically simulated turbulent fluxes without any a priori assumptions. In this manuscript we propose a novel method to avoid this issue and estimate both components from numerical simulations without having to assume any a priori shape or scaling for either. Our approach is based on optimizing results from a modeling perspective and taking as much advantage as possible from the diffusive term, thus maximizing the eddy diffusivity. We use our method to diagnostically investigate four different large-eddy simulations spanning different stability regimes, which reveal that nondiffusive fluxes are important even when trying to minimize them. Furthermore, the calculated profiles for both diffusive and nondiffusive fluxes suggest that their shapes change with stability, which is an effect that is not included in most models currently in use. Finally, we use our results to discuss modeling approaches and identify opportunities for improving current models.
    • Download: (1.531Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Diffusive–Nondiffusive Flux Decompositions in Atmospheric Boundary Layers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264095
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorChor, Tomas;McWilliams, James C.;Chamecki, Marcelo
    date accessioned2022-01-30T17:52:21Z
    date available2022-01-30T17:52:21Z
    date copyright9/30/2020 12:00:00 AM
    date issued2020
    identifier issn0022-4928
    identifier otherjasd200093.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264095
    description abstractEddy diffusivity models are a common method to parameterize turbulent fluxes in the atmospheric sciences community. However, their inability to handle convective boundary layers leads to the addition of a nondiffusive flux component (usually called nonlocal) alongside the original diffusive term (usually called local). Both components are often modeled for convective conditions based on the shape of the eddy diffusivity profile for neutral conditions. This assumption of shape is traditionally employed due to the difficulty of estimating both components based on numerically simulated turbulent fluxes without any a priori assumptions. In this manuscript we propose a novel method to avoid this issue and estimate both components from numerical simulations without having to assume any a priori shape or scaling for either. Our approach is based on optimizing results from a modeling perspective and taking as much advantage as possible from the diffusive term, thus maximizing the eddy diffusivity. We use our method to diagnostically investigate four different large-eddy simulations spanning different stability regimes, which reveal that nondiffusive fluxes are important even when trying to minimize them. Furthermore, the calculated profiles for both diffusive and nondiffusive fluxes suggest that their shapes change with stability, which is an effect that is not included in most models currently in use. Finally, we use our results to discuss modeling approaches and identify opportunities for improving current models.
    publisherAmerican Meteorological Society
    titleDiffusive–Nondiffusive Flux Decompositions in Atmospheric Boundary Layers
    typeJournal Paper
    journal volume77
    journal issue10
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-20-0093.1
    journal fristpage3479
    journal lastpage3494
    treeJournal of the Atmospheric Sciences:;2020:;volume( 77 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian