YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Description of Atmospheric Aerosol Dynamics Using an Inverse Gaussian Distributed Method of Moments

    Source: Journal of the Atmospheric Sciences:;2020:;volume( 77 ):;issue: 009::page 3011
    Author:
    Shen, J.;Yu, M.;Lin, J.
    DOI: 10.1175/JAS-D-20-0077.1
    Publisher: American Meteorological Society
    Abstract: For nearly 60 years, the lognormal distribution has been the most widely used function in the field of atmospheric science for characterizing atmospheric aerosol size distribution. We verify whether the three-parameter inverse Gaussian distribution (IGD) is a more suitable function than the lognormal distribution for characterizing aerosol size distribution. An attractive feature of IGD is that with it a new method of moments (MOM) can be established for resolving atmospheric aerosol dynamics which is described by a kinetic aerosol dynamics equation, i.e., inverse Gaussian distributed MOM (IGDMOM). The advantage of IGDMOM is that all of its moments can be analytically calculated using a closure moment function inherited from IGD. The precision and efficiency of IGDMOM are verified by comparing it with other recognizable methods in test cases of four representative atmospheric aerosol dynamics. Several key statistical quantities determining aerosol size distributions, including kth moments (k = 0, 1/3, 2/3, and 2), geometric standard deviation, skewness, and kurtosis, are evaluated. IGDMOM has higher precision than the lognormal MOM with nearly identical efficiency. The article provides a novel alternative to atmospheric scientists for solving kinetic aerosol dynamics equations.
    • Download: (1.347Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Description of Atmospheric Aerosol Dynamics Using an Inverse Gaussian Distributed Method of Moments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264091
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorShen, J.;Yu, M.;Lin, J.
    date accessioned2022-01-30T17:52:15Z
    date available2022-01-30T17:52:15Z
    date copyright8/19/2020 12:00:00 AM
    date issued2020
    identifier issn0022-4928
    identifier otherjasd200077.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264091
    description abstractFor nearly 60 years, the lognormal distribution has been the most widely used function in the field of atmospheric science for characterizing atmospheric aerosol size distribution. We verify whether the three-parameter inverse Gaussian distribution (IGD) is a more suitable function than the lognormal distribution for characterizing aerosol size distribution. An attractive feature of IGD is that with it a new method of moments (MOM) can be established for resolving atmospheric aerosol dynamics which is described by a kinetic aerosol dynamics equation, i.e., inverse Gaussian distributed MOM (IGDMOM). The advantage of IGDMOM is that all of its moments can be analytically calculated using a closure moment function inherited from IGD. The precision and efficiency of IGDMOM are verified by comparing it with other recognizable methods in test cases of four representative atmospheric aerosol dynamics. Several key statistical quantities determining aerosol size distributions, including kth moments (k = 0, 1/3, 2/3, and 2), geometric standard deviation, skewness, and kurtosis, are evaluated. IGDMOM has higher precision than the lognormal MOM with nearly identical efficiency. The article provides a novel alternative to atmospheric scientists for solving kinetic aerosol dynamics equations.
    publisherAmerican Meteorological Society
    titleDescription of Atmospheric Aerosol Dynamics Using an Inverse Gaussian Distributed Method of Moments
    typeJournal Paper
    journal volume77
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-20-0077.1
    journal fristpage3011
    journal lastpage3031
    treeJournal of the Atmospheric Sciences:;2020:;volume( 77 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian