YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Lilly’s Model for Steady-State Tropical Cyclone Intensity and Structure

    Source: Journal of the Atmospheric Sciences:;2020:;volume( 77 ):;issue: 011::page 3701
    Author:
    Tao, Dandan;Rotunno, Richard;Bell, Michael
    DOI: 10.1175/JAS-D-20-0057.1
    Publisher: American Meteorological Society
    Abstract: This study revisits the axisymmetric tropical cyclone (TC) theory from D. K. Lilly’s unpublished manuscript (Lilly model) and compares it to axisymmetric TC simulations from a nonhydrostatic cloud model. Analytic solutions of the Lilly model are presented through simplifying assumptions. Sensitivity experiments varying the sea surface, boundary layer and tropopause temperatures, and the absolute angular momentum (M) at some outer radius in the Lilly model show that these variations influence the radial structure of the tangential wind profile V(r) at the boundary layer top. However, these parameter variations have little effect on the inner-core normalized tangential wind, V(r/rm)/Vm, where Vm is the maximum tangential wind at radius rm. The outflow temperature T∞ as a function of M (or saturation entropy s*) is found to be the only input that changes the normalized tangential wind radial structure in the Lilly model. In contrast with the original assumption of the Lilly model that T∞(s*) is determined by the environment, it is argued here that T∞(s*) is determined by the TC interior flow under the environmental constraint of the tropopause height. The present study shows that the inner-core tangential wind radial structure from the Lilly model generally agrees well with nonhydrostatic cloud model simulations except in the eyewall region where the Lilly model tends to underestimate the tangential winds due to its balanced-dynamics assumptions. The wind structure in temperature–radius coordinates from the Lilly model can largely reproduce the numerical simulation results. Though the Lilly model is based on a number of simplifying assumptions, this paper shows its utility in understanding steady-state TC intensity and structure.
    • Download: (4.212Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Lilly’s Model for Steady-State Tropical Cyclone Intensity and Structure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264082
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorTao, Dandan;Rotunno, Richard;Bell, Michael
    date accessioned2022-01-30T17:52:02Z
    date available2022-01-30T17:52:02Z
    date copyright10/15/2020 12:00:00 AM
    date issued2020
    identifier issn0022-4928
    identifier otherjasd200057.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264082
    description abstractThis study revisits the axisymmetric tropical cyclone (TC) theory from D. K. Lilly’s unpublished manuscript (Lilly model) and compares it to axisymmetric TC simulations from a nonhydrostatic cloud model. Analytic solutions of the Lilly model are presented through simplifying assumptions. Sensitivity experiments varying the sea surface, boundary layer and tropopause temperatures, and the absolute angular momentum (M) at some outer radius in the Lilly model show that these variations influence the radial structure of the tangential wind profile V(r) at the boundary layer top. However, these parameter variations have little effect on the inner-core normalized tangential wind, V(r/rm)/Vm, where Vm is the maximum tangential wind at radius rm. The outflow temperature T∞ as a function of M (or saturation entropy s*) is found to be the only input that changes the normalized tangential wind radial structure in the Lilly model. In contrast with the original assumption of the Lilly model that T∞(s*) is determined by the environment, it is argued here that T∞(s*) is determined by the TC interior flow under the environmental constraint of the tropopause height. The present study shows that the inner-core tangential wind radial structure from the Lilly model generally agrees well with nonhydrostatic cloud model simulations except in the eyewall region where the Lilly model tends to underestimate the tangential winds due to its balanced-dynamics assumptions. The wind structure in temperature–radius coordinates from the Lilly model can largely reproduce the numerical simulation results. Though the Lilly model is based on a number of simplifying assumptions, this paper shows its utility in understanding steady-state TC intensity and structure.
    publisherAmerican Meteorological Society
    titleLilly’s Model for Steady-State Tropical Cyclone Intensity and Structure
    typeJournal Paper
    journal volume77
    journal issue11
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-20-0057.1
    journal fristpage3701
    journal lastpage3720
    treeJournal of the Atmospheric Sciences:;2020:;volume( 77 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian