YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulations of Orographic Convection across Multiple Gray Zones

    Source: Journal of the Atmospheric Sciences:;2020:;volume( 77 ):;issue: 010::page 3301
    Author:
    Kirshbaum, Daniel J.
    DOI: 10.1175/JAS-D-20-0035.1
    Publisher: American Meteorological Society
    Abstract: Idealized simulations are used to determine the sensitivity of moist orographic convection to horizontal grid spacing Δh. In simulated mechanically (MECH) and thermally (THERM) forced convection over an isolated ridge, Δh is varied systematically over both the deep-convection (Δh ~ 10–1 km) and turbulence (Δh ~ 1 km–100 m) gray zones. To aid physical interpretation, a new parcel-based bulk entrainment/detrainment diagnosis for horizontally heterogeneous flows is developed. Within the deep-convection gray zone, the Δh sensitivity is dominated by differences in parameterized versus explicit convection; the former initiates convection too far upstream of the ridge (MECH) and too early in the diurnal heating cycle (THERM). These errors stem in part from a large underprediction of parameterized entrainment and detrainment. Within the turbulence gray zone, sensitivities to Δh arise from the representation of both subcloud- and cloud-layer turbulence. As Δh is decreased, MECH exhibits stronger cloud-layer entrainment to enhance the convective mass flux Mco, while THERM exhibits stronger detrainment to suppress Mco and delay convection initiation. The latter is reinforced by increased subcloud turbulence at smaller Δh, which leads to drying and diffusion of the central updraft responsible for initiating moist convection. Numerical convergence to a robust solution occurs only in THERM, which develops a fully turbulent flow with a resolved inertial subrange (for Δh ≤ 250 m). In MECH, by contrast, turbulent transition occurs within the orographic cloud, the details of which depend on both physical location and Δh.
    • Download: (4.770Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulations of Orographic Convection across Multiple Gray Zones

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264071
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorKirshbaum, Daniel J.
    date accessioned2022-01-30T17:51:39Z
    date available2022-01-30T17:51:39Z
    date copyright9/21/2020 12:00:00 AM
    date issued2020
    identifier issn0022-4928
    identifier otherjasd200035.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264071
    description abstractIdealized simulations are used to determine the sensitivity of moist orographic convection to horizontal grid spacing Δh. In simulated mechanically (MECH) and thermally (THERM) forced convection over an isolated ridge, Δh is varied systematically over both the deep-convection (Δh ~ 10–1 km) and turbulence (Δh ~ 1 km–100 m) gray zones. To aid physical interpretation, a new parcel-based bulk entrainment/detrainment diagnosis for horizontally heterogeneous flows is developed. Within the deep-convection gray zone, the Δh sensitivity is dominated by differences in parameterized versus explicit convection; the former initiates convection too far upstream of the ridge (MECH) and too early in the diurnal heating cycle (THERM). These errors stem in part from a large underprediction of parameterized entrainment and detrainment. Within the turbulence gray zone, sensitivities to Δh arise from the representation of both subcloud- and cloud-layer turbulence. As Δh is decreased, MECH exhibits stronger cloud-layer entrainment to enhance the convective mass flux Mco, while THERM exhibits stronger detrainment to suppress Mco and delay convection initiation. The latter is reinforced by increased subcloud turbulence at smaller Δh, which leads to drying and diffusion of the central updraft responsible for initiating moist convection. Numerical convergence to a robust solution occurs only in THERM, which develops a fully turbulent flow with a resolved inertial subrange (for Δh ≤ 250 m). In MECH, by contrast, turbulent transition occurs within the orographic cloud, the details of which depend on both physical location and Δh.
    publisherAmerican Meteorological Society
    titleNumerical Simulations of Orographic Convection across Multiple Gray Zones
    typeJournal Paper
    journal volume77
    journal issue10
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-20-0035.1
    journal fristpage3301
    journal lastpage3320
    treeJournal of the Atmospheric Sciences:;2020:;volume( 77 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian