YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Inertial Waves in Axisymmetric Tropical Cyclones

    Source: Journal of the Atmospheric Sciences:;2020:;volume( 77 ):;issue: 007::page 2501
    Author:
    O’Neill, Morgan E;Chavas, Daniel R.
    DOI: 10.1175/JAS-D-19-0330.1
    Publisher: American Meteorological Society
    Abstract: The heat engine model of tropical cyclones describes a thermally direct overturning circulation. Outflowing air slowly subsides as radiative cooling to space balances adiabatic warming, a process that does not consume any work. However, we show here that the lateral spread of the outflow is limited by the environmental deformation radius, which at high latitudes can be rather small. In such cases, the outflowing air is radially constrained, which limits how far downward it can subside via radiative cooling alone. Some literature has invoked the possibility of “mechanical subsidence” or “forced descent” in the storm outflow region in the presence of high inertial stability, which would be a thermally indirect circulation. Mechanical subsidence in the subsiding branch of a tropical cyclone has not before been observed or characterized. A series of axisymmetric tropical cyclone simulations at different latitudes and domain sizes is conducted to study the impact of environmental inertial stability on storm dynamics. In higher-latitude storms in large axisymmetric domains, the outflow acts as a wavemaker to excite an inertial wave at the environmental inertial (Coriolis) frequency. This inertial wave periodically ventilates the core of a high-latitude storm with its own low-entropy exhaust air. The wave response is in contrast to the presumed forced descent model, and we hypothesize that this is because inertial stability provides less resistance than buoyant stability, even in highly inertially stable environments.
    • Download: (2.729Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Inertial Waves in Axisymmetric Tropical Cyclones

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264037
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorO’Neill, Morgan E;Chavas, Daniel R.
    date accessioned2022-01-30T17:50:41Z
    date available2022-01-30T17:50:41Z
    date copyright6/30/2020 12:00:00 AM
    date issued2020
    identifier issn0022-4928
    identifier otherjasd190330.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264037
    description abstractThe heat engine model of tropical cyclones describes a thermally direct overturning circulation. Outflowing air slowly subsides as radiative cooling to space balances adiabatic warming, a process that does not consume any work. However, we show here that the lateral spread of the outflow is limited by the environmental deformation radius, which at high latitudes can be rather small. In such cases, the outflowing air is radially constrained, which limits how far downward it can subside via radiative cooling alone. Some literature has invoked the possibility of “mechanical subsidence” or “forced descent” in the storm outflow region in the presence of high inertial stability, which would be a thermally indirect circulation. Mechanical subsidence in the subsiding branch of a tropical cyclone has not before been observed or characterized. A series of axisymmetric tropical cyclone simulations at different latitudes and domain sizes is conducted to study the impact of environmental inertial stability on storm dynamics. In higher-latitude storms in large axisymmetric domains, the outflow acts as a wavemaker to excite an inertial wave at the environmental inertial (Coriolis) frequency. This inertial wave periodically ventilates the core of a high-latitude storm with its own low-entropy exhaust air. The wave response is in contrast to the presumed forced descent model, and we hypothesize that this is because inertial stability provides less resistance than buoyant stability, even in highly inertially stable environments.
    publisherAmerican Meteorological Society
    titleInertial Waves in Axisymmetric Tropical Cyclones
    typeJournal Paper
    journal volume77
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-19-0330.1
    journal fristpage2501
    journal lastpage2517
    treeJournal of the Atmospheric Sciences:;2020:;volume( 77 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian