YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Large-Eddy Simulation Study of Contrail Ice Number Formation

    Source: Journal of the Atmospheric Sciences:;2020:;volume( 77 ):;issue: 007::page 2585
    Author:
    Lewellen, David C.
    DOI: 10.1175/JAS-D-19-0322.1
    Publisher: American Meteorological Society
    Abstract: Ice crystal number is a critical ingredient in the potential climate impact of persistent contrails and contrail-induced cirrus. We perform an extensive set of large-eddy simulations (LES) of ice nucleation and growth within aircraft exhaust jets with an emphasis on assessing the importance of detailed plume mixing on the effective ice-number emission index (EIiceno) produced for different conditions. Parameter variations considered include ambient temperature, pressure, and humidity; initial aerosol origin (exhaust or ambient), number, and properties; and aircraft engine size. The LES are performed in a temporal representation with binned microphysics including the basics of activation of underlying aerosol, droplet growth, and freezing. We find that a box-model approach reproduces EIiceno from LES well for sufficiently low aerosol numbers or when crystal production is predominantly on ambient aerosol. For larger exhaust aerosol number the box model generally overestimates EIiceno and can underestimate the fraction from ultrafine aerosol. The effects of different parameters on EIiceno can largely be understood with simpler analytic models that are formulated in low and high aerosol-number limits. The simulations highlight the potential importance of “cold” contrails, ambient ultrafine aerosols, crystal loss due to competition between different-sized crystals, and limitations on reducing EIiceno. We find EIiceno insensitive to engine size for lower aerosol numbers, but decreasing with increasing engine size for higher aerosol numbers. Temporal versus spatial representations for jet LES are compared in an appendix.
    • Download: (1.411Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Large-Eddy Simulation Study of Contrail Ice Number Formation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4264031
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorLewellen, David C.
    date accessioned2022-01-30T17:50:31Z
    date available2022-01-30T17:50:31Z
    date copyright7/8/2020 12:00:00 AM
    date issued2020
    identifier issn0022-4928
    identifier otherjasd190322.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264031
    description abstractIce crystal number is a critical ingredient in the potential climate impact of persistent contrails and contrail-induced cirrus. We perform an extensive set of large-eddy simulations (LES) of ice nucleation and growth within aircraft exhaust jets with an emphasis on assessing the importance of detailed plume mixing on the effective ice-number emission index (EIiceno) produced for different conditions. Parameter variations considered include ambient temperature, pressure, and humidity; initial aerosol origin (exhaust or ambient), number, and properties; and aircraft engine size. The LES are performed in a temporal representation with binned microphysics including the basics of activation of underlying aerosol, droplet growth, and freezing. We find that a box-model approach reproduces EIiceno from LES well for sufficiently low aerosol numbers or when crystal production is predominantly on ambient aerosol. For larger exhaust aerosol number the box model generally overestimates EIiceno and can underestimate the fraction from ultrafine aerosol. The effects of different parameters on EIiceno can largely be understood with simpler analytic models that are formulated in low and high aerosol-number limits. The simulations highlight the potential importance of “cold” contrails, ambient ultrafine aerosols, crystal loss due to competition between different-sized crystals, and limitations on reducing EIiceno. We find EIiceno insensitive to engine size for lower aerosol numbers, but decreasing with increasing engine size for higher aerosol numbers. Temporal versus spatial representations for jet LES are compared in an appendix.
    publisherAmerican Meteorological Society
    titleA Large-Eddy Simulation Study of Contrail Ice Number Formation
    typeJournal Paper
    journal volume77
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-19-0322.1
    journal fristpage2585
    journal lastpage2604
    treeJournal of the Atmospheric Sciences:;2020:;volume( 77 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian